Publications by Juan Sosa PhD

Estadística y Probabilidades - Medidas de Variabilidad

28.03.2022

1 Introducción Las medidas de variabilidad son aquellas que miden la dispersión de los datos, es decir, indican qué tan “parecidos” o que tan “diferentes” son entre si los valores observados. Estas medidas son indispensables, dado que una medida de tendencia central por si sola podría ser engañosa cuando los datos son muy variables. ...

11474 sym R (1685 sym/44 pcs) 2 tbl

Estadística Bayesiana - Taller 3

24.03.2022

La siguiente tabla muestra el número de accidentes mortales por año asociados con aerolíneas en todo el mundo durante un período de diez años (Fuente: Statistical Abstract of the United States). Suponga que el número de accidentes mortales en cada año son condicionalmente independientes y siguen una distribución Poisson con parámetro \(\...

4431 sym 1 tbl

Estadística y Probabilidades - Taller 3

24.03.2022

Considere le siguiente distribución de frecuencias: Intervalo Marca de clase F. Absoluta F. Relativa F. Abs. Acumulada F. Rel. Acumulada \([0 ; 10]\) 60 \((10 ; 20]\) 0.4 \((20 ; 30]\) 30 170 \((30 ; 100]\) 0.1 \((100 ; 200]\) 200 Total N.A. N.A. Completar la tabla. ¿Cuántos individuos asumen un valor de la variable de hasta 100...

3257 sym R (254 sym/1 pcs) 3 tbl

Estadística Bayesiana - Modelo Poisson

18.03.2022

1 Modelo general Si Su estado de información acerca de las secuencia de variables de conteo \(y_1,\ldots,y_n\) es intercambiable, entonces el modelamiento \(y_1,\ldots,y_n\) admite representación jerárquica de la forma: \[\begin{align} y_i\mid\theta &\stackrel{\text{iid}}{\sim}\textsf{Poisson}(\theta)\,,\quad i = 1,\ldots,n \\ \theta...

9086 sym R (11421 sym/73 pcs) 4 img 2 tbl

Estadística Bayesiana - Taller 2 - Solución

18.03.2022

Sean \(x\), \(y\), y \(z\) variables aleatorias con función de densidad conjunta (discreta o continua) dada por \(p(x,y,z) \propto p(x,z)p(y,z)p(z)\). Muestre que: \(p(x\mid y,z)\propto p(x,z)\), i.e., \(p(x\mid y,z)\) es función de \(x\) y \(z\). Se tiene que \[ p(x\mid y,z) = \frac{p(x,y,z)}{p(y,z)} = \frac{p(x,z)p(y,z)p(z)}{p(y,z)} \propt...

18476 sym R (3199 sym/26 pcs) 4 img

Estadística Bayesiana - Taller 2

17.03.2022

Sean \(x\), \(y\), y \(z\) variables aleatorias con función de densidad conjunta (discreta o continua) dada por \(p(x,y,z) \propto p(x,z)p(y,z)p(z)\). Muestre que: \(p(x\mid y,z)\propto p(x,z)\), i.e., \(p(x\mid y,z)\) es función de \(x\) y \(z\). \(p(y\mid x,z)\propto p(y,z)\), i.e., \(p(y\mid x,z)\) es función de \(y\) y \(z\). \(x\) y \(y\...

6313 sym

Estadística y Probabilidades - Taller 2 - Solución

15.03.2022

1 Tablas a una vía de clasificación El pH indica la concentración de iones de hidrógeno presentes en determinadas disoluciones, y determina muchas características notables de la estructura y de la actividad de las moléculas correspondientes. El pH de una disolución se puede medir de manera aproximada empleando indicadores: ácidos o bases...

3670 sym R (1747 sym/17 pcs) 3 img 3 tbl

Estadística y Probabilidades - Taller 2

15.03.2022

1 Tablas a una vía de clasificación El pH indica la concentración de iones de hidrógeno presentes en determinadas disoluciones, y determina muchas características notables de la estructura y de la actividad de las moléculas correspondientes. El pH de una disolución se puede medir de manera aproximada empleando indicadores: ácidos o bases...

2495 sym R (218 sym/1 pcs) 1 img 1 tbl

Estadística Bayesiana - Modelo de Grafos Aleatorios

11.03.2022

1 Redes sociales Una red es una colección de objetos interconectados. Una relación es una propiedad irreductible entre dos o más objetos, en contraste con los atributos de los objetos en si mismos. Los objetos se senominan comúnmente como actores, individuos, nodos, o vertices; mientras que las relaciones entre ellos como enlaces, conexiones,...

9272 sym R (6706 sym/54 pcs) 14 img

Estadística Bayesiana - Taller 1 - Solución

09.03.2022

Suponga que si \(\theta = i\), entonces \(y\) tiene una distribución Normal con media \(i\) y desviación estándar \(\sigma\), para \(i = 1,2\). Además, suponga que \(\textsf{Pr}(\theta = 1) = \textsf{Pr}(\theta = 2) = 0.5\). Escriba una expresión general para la densidad marginal de \(y\) y dibújela para \(\sigma = 2\). Se tiene que \(p(y\...

6240 sym R (302 sym/5 pcs) 1 img