GNI per capita, PPP (current international US$)

Source: worldbank.org, 01.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Angola Angola 7,660 +5.22% 132
Albania Albania 23,310 +11.1% 77
Andorra Andorra 78,170 +5.28% 13
United Arab Emirates United Arab Emirates 78,110 +1.86% 14
Argentina Argentina 29,570 +0.373% 66
Armenia Armenia 21,990 +4.96% 79
Antigua & Barbuda Antigua & Barbuda 32,060 +6.37% 64
Australia Australia 68,800 +1.96% 21
Austria Austria 71,860 +1.91% 19
Azerbaijan Azerbaijan 24,170 +6.71% 74
Burundi Burundi 950 +2.15% 179
Belgium Belgium 73,360 +4.79% 18
Benin Benin 4,390 +7.33% 151
Burkina Faso Burkina Faso 2,770 +4.92% 169
Bangladesh Bangladesh 10,060 +5.78% 123
Bulgaria Bulgaria 39,130 +9.7% 51
Bahrain Bahrain 63,610 +5.05% 24
Bosnia & Herzegovina Bosnia & Herzegovina 21,900 -2.14% 80
Belarus Belarus 32,220 +8.01% 62
Belize Belize 14,530 +9.08% 107
Bermuda Bermuda 124,400 +6.54% 2
Bolivia Bolivia 10,880 +2.45% 119
Brazil Brazil 21,650 +5.61% 82
Barbados Barbados 21,740 +6.1% 81
Brunei Brunei 92,860 +7.81% 7
Botswana Botswana 20,570 -2.23% 86
Central African Republic Central African Republic 1,340 +0.752% 178
Canada Canada 64,470 +1.8% 22
Switzerland Switzerland 90,820 +3.51% 8
Chile Chile 32,850 +4.65% 61
China China 26,920 +7.81% 68
Côte d’Ivoire Côte d’Ivoire 7,350 +5.76% 133
Cameroon Cameroon 5,490 +3.58% 145
Congo - Kinshasa Congo - Kinshasa 1,650 +5.1% 175
Congo - Brazzaville Congo - Brazzaville 6,700 +3.08% 137
Colombia Colombia 21,060 +3.18% 85
Comoros Comoros 4,080 +4.08% 154
Cape Verde Cape Verde 11,050 +8.55% 117
Costa Rica Costa Rica 27,880 +6.74% 67
Cyprus Cyprus 54,660 +5.66% 34
Czechia Czechia 54,340 +3.6% 35
Germany Germany 74,880 +5.32% 16
Djibouti Djibouti 7,850 +5.23% 127
Dominica Dominica 21,380 +5.48% 83
Denmark Denmark 82,240 +8.44% 12
Dominican Republic Dominican Republic 26,050 +5.59% 70
Algeria Algeria 17,220 +3.86% 97
Ecuador Ecuador 15,420 -0.836% 102
Egypt Egypt 18,230 +2.94% 95
Spain Spain 56,630 +6.91% 30
Estonia Estonia 48,260 +6.46% 42
Ethiopia Ethiopia 3,270 +7.21% 161
Finland Finland 64,340 +3.94% 23
Fiji Fiji 14,880 +4.2% 105
France France 62,620 +5.4% 25
Micronesia (Federated States of) Micronesia (Federated States of) 4,690 +0.644% 149
Gabon Gabon 19,540 +2.57% 89
United Kingdom United Kingdom 60,090 +4.23% 28
Georgia Georgia 26,570 +14.9% 69
Ghana Ghana 7,730 +9.34% 130
Guinea Guinea 4,200 +6.06% 152
Gambia Gambia 3,400 +5.59% 160
Guinea-Bissau Guinea-Bissau 3,080 +5.48% 166
Equatorial Guinea Equatorial Guinea 12,330 +0.653% 113
Greece Greece 43,100 +8.05% 49
Grenada Grenada 18,240 +7.17% 94
Guatemala Guatemala 14,170 +5.04% 108
Guyana Guyana 52,320 +19.9% 38
Hong Kong SAR China Hong Kong SAR China 82,340 +6.16% 11
Honduras Honduras 6,900 +3.92% 136
Croatia Croatia 48,760 +7.31% 40
Haiti Haiti 3,180 -3.05% 165
Hungary Hungary 46,400 +5.5% 45
Indonesia Indonesia 16,010 +6.66% 100
India India 11,000 +8.06% 118
Ireland Ireland 99,470 +4.57% 6
Iran Iran 18,420 +4.54% 93
Iraq Iraq 14,550 -1.09% 106
Iceland Iceland 78,080 +0.0128% 15
Israel Israel 55,250 +4.05% 32
Italy Italy 60,460 +4.98% 27
Jamaica Jamaica 11,410 +0.973% 115
Jordan Jordan 10,570 +2.32% 121
Japan Japan 55,120 +4.28% 33
Kazakhstan Kazakhstan 37,870 +9.45% 53
Kenya Kenya 6,520 +5.16% 138
Kyrgyzstan Kyrgyzstan 7,740 +7.5% 129
Cambodia Cambodia 7,820 +7.71% 128
Kiribati Kiribati 5,990 +4.36% 142
St. Kitts & Nevis St. Kitts & Nevis 35,130 +3.9% 56
Kuwait Kuwait 62,460 -1.45% 26
Laos Laos 9,170 +6.5% 125
Liberia Liberia 1,760 +4.76% 174
Libya Libya 14,050 +1.01% 110
St. Lucia St. Lucia 25,160 +5.49% 72
Sri Lanka Sri Lanka 15,240 +8.7% 103
Lesotho Lesotho 3,580 +2.29% 158
Lithuania Lithuania 53,070 +7.52% 37
Luxembourg Luxembourg 106,980 +8.22% 4
Latvia Latvia 43,130 +6.47% 48
Morocco Morocco 10,150 +4.64% 122
Moldova Moldova 18,880 +4.71% 91
Madagascar Madagascar 1,830 +3.39% 172
Maldives Maldives 23,630 +7.95% 76
Mexico Mexico 24,920 +2.81% 73
Marshall Islands Marshall Islands 9,720 +8% 124
North Macedonia North Macedonia 25,210 +8.95% 71
Mali Mali 3,210 +5.25% 163
Malta Malta 57,860 +6.09% 29
Myanmar (Burma) Myanmar (Burma) 5,920 +1.37% 143
Montenegro Montenegro 33,280 +7.74% 60
Mongolia Mongolia 16,930 +5.61% 98
Mozambique Mozambique 1,510 -1.31% 177
Mauritania Mauritania 7,200 +3.6% 134
Mauritius Mauritius 34,340 +8.43% 57
Malawi Malawi 1,790 +0.562% 173
Malaysia Malaysia 37,500 +6.05% 54
Namibia Namibia 11,300 +5.51% 116
Niger Niger 1,990 +7.57% 171
Nigeria Nigeria 6,210 +3.16% 140
Nicaragua Nicaragua 8,270 +4.16% 126
Netherlands Netherlands 83,040 +6.94% 10
Norway Norway 105,770 +0.152% 5
Nepal Nepal 5,830 +6.78% 144
Nauru Nauru 23,210 -2.15% 78
New Zealand New Zealand 53,160 +2.23% 36
Oman Oman 38,840 -2.39% 52
Pakistan Pakistan 6,140 +3.54% 141
Panama Panama 39,290 +3.72% 50
Peru Peru 16,770 +4.16% 99
Philippines Philippines 13,330 +9.35% 111
Papua New Guinea Papua New Guinea 4,610 +6.71% 150
Poland Poland 48,680 +8.23% 41
Puerto Rico Puerto Rico 34,130 +3.96% 58
Portugal Portugal 49,690 +7.62% 39
Paraguay Paraguay 17,900 +5.79% 96
Palestinian Territories Palestinian Territories 5,310 -26% 146
Qatar Qatar 121,930 -2.64% 3
Romania Romania 47,420 +6.23% 43
Russia Russia 46,780 +7.07% 44
Rwanda Rwanda 3,620 +8.71% 157
Saudi Arabia Saudi Arabia 71,600 -0.583% 20
Sudan Sudan 2,070 -12.3% 170
Senegal Senegal 4,960 +7.36% 147
Singapore Singapore 126,190 +7.54% 1
Solomon Islands Solomon Islands 2,880 +1.41% 168
Sierra Leone Sierra Leone 3,490 +4.49% 159
El Salvador El Salvador 12,420 +4.55% 112
Somalia Somalia 1,590 +2.58% 176
Serbia Serbia 29,870 +9.61% 65
São Tomé & Príncipe São Tomé & Príncipe 6,220 +0.161% 139
Suriname Suriname 20,350 +6.16% 87
Slovakia Slovakia 46,110 +7.16% 46
Slovenia Slovenia 55,870 +4.53% 31
Sweden Sweden 74,150 +5.72% 17
Eswatini Eswatini 10,750 +1.8% 120
Seychelles Seychelles 32,180 +4.08% 63
Chad Chad 2,930 +1.03% 167
Togo Togo 3,250 +5.52% 162
Thailand Thailand 24,020 +4.75% 75
Tajikistan Tajikistan 7,100 +14.7% 135
Turkmenistan Turkmenistan 20,220 +2.8% 88
Timor-Leste Timor-Leste 4,880 -13.3% 148
Trinidad & Tobago Trinidad & Tobago 36,280 +2.75% 55
Tunisia Tunisia 14,090 +3.15% 109
Turkey Turkey 43,410 +3.63% 47
Tanzania Tanzania 4,120 +4.57% 153
Uganda Uganda 3,200 +5.96% 164
Ukraine Ukraine 18,580 +2.31% 92
Uruguay Uruguay 34,060 +6.3% 59
United States United States 85,980 +4.09% 9
Uzbekistan Uzbekistan 12,000 +7.05% 114
St. Vincent & Grenadines St. Vincent & Grenadines 21,080 +6.14% 84
Vietnam Vietnam 15,850 +11.2% 101
Vanuatu Vanuatu 4,120 +4.57% 153
Samoa Samoa 7,720 +11.4% 131
Kosovo Kosovo 19,010 +17.9% 90
South Africa South Africa 15,150 +1.07% 104
Zambia Zambia 3,950 +1.8% 155
Zimbabwe Zimbabwe 3,880 +2.92% 156

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'NY.GNP.PCAP.PP.CD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'NY.GNP.PCAP.PP.CD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))