Consumer price index (2010 = 100)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 169 -6.6% 68
Angola Angola 1,032 +28.2% 7
Albania Albania 141 +2.21% 104
United Arab Emirates United Arab Emirates 122 +1.66% 150
Armenia Armenia 156 +0.27% 80
Antigua & Barbuda Antigua & Barbuda 142 +6.2% 101
Australia Australia 144 +3.16% 95
Austria Austria 148 +2.94% 87
Azerbaijan Azerbaijan 218 +2.21% 41
Burundi Burundi 384 +20.2% 21
Belgium Belgium 142 +3.14% 102
Benin Benin 122 +1.16% 149
Burkina Faso Burkina Faso 137 +4.19% 113
Bangladesh Bangladesh 262 +10.5% 30
Bulgaria Bulgaria 155 +2.45% 81
Bahrain Bahrain 121 +0.92% 152
Bahamas Bahamas 131 +0.409% 131
Bosnia & Herzegovina Bosnia & Herzegovina 130 +1.69% 132
Belarus Belarus 752 +5.79% 9
Belize Belize 126 +3.29% 145
Bolivia Bolivia 165 +5.1% 69
Brazil Brazil 223 +4.37% 37
Barbados Barbados 170 -0.462% 66
Brunei Brunei 106 -0.389% 157
Bhutan Bhutan 218 +2.76% 40
Botswana Botswana 197 +2.82% 48
Canada Canada 138 +2.38% 109
Switzerland Switzerland 106 +1.06% 158
Chile Chile 178 +4.3% 60
China China 133 +0.218% 126
Côte d’Ivoire Côte d’Ivoire 135 +3.47% 115
Cameroon Cameroon 148 +4.53% 86
Congo - Brazzaville Congo - Brazzaville 143 +3.09% 98
Colombia Colombia 196 +6.61% 49
Cape Verde Cape Verde 128 +1.05% 139
Costa Rica Costa Rica 143 -0.413% 99
Cyprus Cyprus 119 +1.8% 153
Czechia Czechia 163 +2.44% 75
Germany Germany 135 +2.26% 118
Djibouti Djibouti 135 +2.08% 116
Dominica Dominica 121 +2.59% 151
Denmark Denmark 127 +1.37% 141
Dominican Republic Dominican Republic 175 +3.3% 62
Algeria Algeria 207 +4.05% 44
Ecuador Ecuador 133 +1.55% 124
Egypt Egypt 624 +28.3% 14
Spain Spain 132 +2.77% 128
Estonia Estonia 172 +3.52% 64
Ethiopia Ethiopia 1,039 +21% 6
Finland Finland 133 +1.57% 123
Fiji Fiji 144 +4.51% 96
France France 127 +2% 143
Gabon Gabon 137 +1.17% 112
United Kingdom United Kingdom 147 +3.27% 88
Georgia Georgia 179 +1.11% 59
Ghana Ghana 749 +22.8% 10
Guinea Guinea 422 +8.12% 18
Gambia Gambia 286 +11.6% 27
Guinea-Bissau Guinea-Bissau 142 +3.77% 103
Greece Greece 119 +2.74% 154
Grenada Grenada 116 +1.09% 155
Guatemala Guatemala 180 +2.87% 58
Guyana Guyana 138 +2.9% 108
Hong Kong SAR China Hong Kong SAR China 145 +1.73% 93
Honduras Honduras 198 +4.61% 47
Croatia Croatia 139 +2.97% 107
Haiti Haiti 711 +26.9% 12
Hungary Hungary 184 +3.7% 55
India India 228 +4.95% 34
Ireland Ireland 127 +2.11% 142
Iran Iran 2,835 +32.5% 3
Iceland Iceland 173 +5.86% 63
Israel Israel 122 +3.06% 148
Italy Italy 130 +0.982% 133
Jamaica Jamaica 224 +5.41% 35
Jordan Jordan 138 +1.56% 110
Japan Japan 114 +2.74% 156
Kazakhstan Kazakhstan 313 +8.84% 22
Kenya Kenya 257 +4.49% 31
South Korea South Korea 132 +2.32% 127
Kuwait Kuwait 148 +2.9% 85
Laos Laos 294 +23.1% 25
Lebanon Lebanon 7,751 +45.2% 2
Libya Libya 284 +2.13% 28
St. Lucia St. Lucia 123 -0.11% 146
Sri Lanka Sri Lanka 307 -0.429% 23
Lesotho Lesotho 212 +6.11% 43
Lithuania Lithuania 165 +0.716% 71
Luxembourg Luxembourg 134 +2.05% 121
Latvia Latvia 157 +1.27% 78
Morocco Morocco 130 +0.985% 134
Moldova Moldova 277 +4.68% 29
Maldives Maldives 145 +1.4% 94
Mexico Mexico 184 +4.72% 54
North Macedonia North Macedonia 153 +3.49% 83
Mali Mali 131 +3.21% 130
Malta Malta 131 +1.65% 129
Montenegro Montenegro 151 +3.34% 84
Mongolia Mongolia 296 +6.8% 24
Mozambique Mozambique 247 +4.08% 32
Mauritania Mauritania 169 +2.49% 67
Mauritius Mauritius 170 +3.58% 65
Malawi Malawi 1,023 +32.2% 8
Malaysia Malaysia 133 +1.83% 125
Namibia Namibia 196 +4.24% 50
Niger Niger 138 +9.07% 111
Nigeria Nigeria 699 +33.2% 13
Nicaragua Nicaragua 222 +4.62% 38
Netherlands Netherlands 142 +3.35% 100
Norway Norway 145 +3.15% 92
New Zealand New Zealand 141 +2.92% 105
Pakistan Pakistan 387 +12.6% 20
Panama Panama 128 +0.693% 138
Peru Peru 163 +2.01% 74
Philippines Philippines 160 +3.21% 77
Palau Palau 161 +2.23% 76
Papua New Guinea Papua New Guinea 185 +0.602% 53
Poland Poland 164 +3.79% 72
Portugal Portugal 129 +2.42% 135
Paraguay Paraguay 183 +3.84% 56
Palestinian Territories Palestinian Territories 191 +53.7% 51
Qatar Qatar 126 +1.27% 144
Romania Romania 177 +5.72% 61
Rwanda Rwanda 237 +1.77% 33
Saudi Arabia Saudi Arabia 135 +1.69% 119
Senegal Senegal 134 +0.805% 120
Singapore Singapore 133 +2.39% 122
Sierra Leone Sierra Leone 718 +28.6% 11
El Salvador El Salvador 129 +0.854% 136
San Marino San Marino 129 +1.24% 137
Serbia Serbia 201 +4.67% 46
South Sudan South Sudan 41,281 +91.4% 1
São Tomé & Príncipe São Tomé & Príncipe 387 +14.4% 19
Suriname Suriname 1,699 +16.2% 4
Slovakia Slovakia 155 +2.76% 82
Slovenia Slovenia 135 +1.97% 117
Sweden Sweden 137 +2.84% 114
Seychelles Seychelles 147 +0.312% 89
Chad Chad 156 +8.9% 79
Togo Togo 141 +2.87% 106
Thailand Thailand 123 +1.37% 147
Timor-Leste Timor-Leste 181 +2.06% 57
Tonga Tonga 165 +3.18% 70
Trinidad & Tobago Trinidad & Tobago 164 +0.527% 73
Tunisia Tunisia 220 +7.21% 39
Turkey Turkey 1,323 +58.5% 5
Tanzania Tanzania 224 +3.06% 36
Uganda Uganda 217 +3.32% 42
Ukraine Ukraine 457 +6.5% 16
Uruguay Uruguay 291 +4.85% 26
United States United States 144 +2.95% 97
Uzbekistan Uzbekistan 477 +9.63% 15
St. Vincent & Grenadines St. Vincent & Grenadines 128 +3.63% 140
Vietnam Vietnam 190 +3.62% 52
Samoa Samoa 146 +2.17% 90
Kosovo Kosovo 145 +1.62% 91
South Africa South Africa 203 +4.36% 45
Zambia Zambia 424 +15% 17

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'FP.CPI.TOTL'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'FP.CPI.TOTL'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))