Children out of school, primary, male

Source: worldbank.org, 01.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Albania Albania 4,758 +28.8% 61
Andorra Andorra 140 -14.6% 90
Armenia Armenia 7,498 +22.8% 54
Australia Australia 4,640 -19% 62
Austria Austria 2,817 +95.5% 68
Azerbaijan Azerbaijan 13,068 -51.4% 45
Belgium Belgium 4,898 -18.8% 59
Benin Benin 26,653 -47.4% 35
Burkina Faso Burkina Faso 635,559 +14.2% 6
Bulgaria Bulgaria 6,688 +3.82% 56
Bahrain Bahrain 5,319 +219% 58
Bosnia & Herzegovina Bosnia & Herzegovina 12,179 +0.512% 46
Belarus Belarus 8,671 -22.5% 52
Belize Belize 2,336 +55.1% 70
Bolivia Bolivia 26,027 -17.3% 36
Brazil Brazil 319,994 -11.1% 11
Barbados Barbados 606 +59.9% 87
Brunei Brunei 932 -28.4% 82
Bhutan Bhutan 3,402 -1.85% 66
Botswana Botswana 22,079 -21% 38
Canada Canada 47,805 +12.8% 26
Switzerland Switzerland 808 +0.748% 86
Chile Chile 4,869 -61.6% 60
Côte d’Ivoire Côte d’Ivoire 144,985 -15.5% 15
Colombia Colombia 158,138 +6.63% 14
Costa Rica Costa Rica 10,882 -0.43% 48
Cuba Cuba 18,547 +106% 41
Cayman Islands Cayman Islands 49 -54.2% 98
Germany Germany 36,131 +34.3% 31
Dominica Dominica 393 -3.68% 88
Denmark Denmark 1,398 +19.2% 77
Dominican Republic Dominican Republic 47,271 -27.2% 27
Eritrea Eritrea 101,796 -0.39% 19
Spain Spain 27,232 -4.71% 34
Estonia Estonia 841 -16.3% 83
Ethiopia Ethiopia 1,954,473 -2.05% 2
Finland Finland 3,664 +43.5% 64
Micronesia (Federated States of) Micronesia (Federated States of) 1,211 -2.18% 79
Georgia Georgia 2,792 -86.3% 69
Guatemala Guatemala 89,725 -0.467% 20
Hong Kong SAR China Hong Kong SAR China 77 -88.1% 96
Honduras Honduras 138,222 -8.31% 17
Hungary Hungary 7,054 -0.592% 55
Iceland Iceland 246 -3.53% 89
Israel Israel 20,769 +3.49% 40
Italy Italy 32,310 +16.9% 32
Jamaica Jamaica 10,459 -47.2% 49
Jordan Jordan 9,144 -28.8% 51
Kazakhstan Kazakhstan 74,558 +2.89% 23
Kyrgyzstan Kyrgyzstan 17,339 +16.1% 42
Cambodia Cambodia 144,927 +60.7% 16
Kiribati Kiribati 816 +97.6% 85
South Korea South Korea 13,453 -28.7% 44
Laos Laos 29,190 +45.7% 33
Liberia Liberia 165,518 +11.6% 13
Lesotho Lesotho 44,681 -3.64% 29
Luxembourg Luxembourg 109 -65.9% 94
Latvia Latvia 1,104 +11.1% 80
Macao SAR China Macao SAR China 4,222 +47.3% 63
Maldives Maldives 1,721 +59.4% 76
Marshall Islands Marshall Islands 127 -11.2% 93
North Macedonia North Macedonia 1,831 -60.6% 75
Malta Malta 1,047 +45.6% 81
Mongolia Mongolia 11,786 +1.99% 47
Malaysia Malaysia 85,302 +16.5% 21
Niger Niger 796,959 +4.98% 4
Netherlands Netherlands 2,975 +70.2% 67
Norway Norway 2,143 -7.87% 74
Nauru Nauru 131 -20.1% 92
New Zealand New Zealand 5,341 +85.2% 57
Oman Oman 21,136 +4.91% 39
Pakistan Pakistan 2,988,654 -7.57% 1
Panama Panama 9,941 -1.34% 50
Philippines Philippines 752,911 -8.32% 5
Palau Palau 136 +404% 91
Paraguay Paraguay 47,069 -1.55% 28
Palestinian Territories Palestinian Territories 25,046 +27.1% 37
Qatar Qatar 7,582 -34.4% 53
Romania Romania 81,626 +73.9% 22
Russia Russia 127,688 +28.6% 18
Saudi Arabia Saudi Arabia 40,075 -33.8% 30
Senegal Senegal 456,317 +5.48% 9
Singapore Singapore 1,281 +84.8% 78
El Salvador El Salvador 59,341 -0.585% 24
San Marino San Marino 59 0% 97
Serbia Serbia 2,333 -56.8% 71
Slovakia Slovakia 3,503 -32.4% 65
Slovenia Slovenia 833 -22.2% 84
Sweden Sweden 2,172 +13.5% 73
Seychelles Seychelles 105 +156% 95
Syria Syria 436,379 -18.4% 10
Chad Chad 300,130 +3.74% 12
Tunisia Tunisia 13,923 +33.3% 43
Tuvalu Tuvalu 19 -77.4% 99
Tanzania Tanzania 1,056,194 +7.04% 3
United States United States 517,634 +3.36% 8
Uzbekistan Uzbekistan 54,815 +124% 25
Vanuatu Vanuatu 2,182 +70.5% 72
South Africa South Africa 524,454 +12.9% 7

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SE.PRM.UNER.MA'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SE.PRM.UNER.MA'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))