School enrollment, primary, male (% gross)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Albania Albania 97.2 -2.37% 61
Andorra Andorra 97.7 +8.18% 55
United Arab Emirates United Arab Emirates 106 +11.8% 30
Armenia Armenia 94.2 +0.79% 72
Azerbaijan Azerbaijan 102 +2.2% 40
Burkina Faso Burkina Faso 71.1 -12.6% 102
Bangladesh Bangladesh 107 -4.84% 29
Bahrain Bahrain 93.5 +1.63% 76
Bahamas Bahamas 78.4 -16.7% 99
Bosnia & Herzegovina Bosnia & Herzegovina 87.5 -1.02% 88
Belarus Belarus 95.5 -1.04% 67
Belize Belize 97.5 -3.44% 58
Bermuda Bermuda 86.3 +1.24% 91
Bolivia Bolivia 99 -0.588% 51
Barbados Barbados 95.1 -2.03% 69
Brunei Brunei 93.1 -0.712% 79
China China 98.5 -0.941% 52
Côte d’Ivoire Côte d’Ivoire 104 +7.37% 36
Cameroon Cameroon 118 +1.46% 14
Congo - Kinshasa Congo - Kinshasa 123 -2.31% 8
Congo - Brazzaville Congo - Brazzaville 90 +1.17% 86
Comoros Comoros 97.7 +11.9% 56
Cuba Cuba 99.1 -1.41% 50
Curaçao Curaçao 111 -3.43% 20
Cayman Islands Cayman Islands 103 +1.26% 38
Dominica Dominica 90.6 -3.16% 84
Dominican Republic Dominican Republic 96.2 -5.95% 65
Algeria Algeria 110 +0.0271% 23
Ecuador Ecuador 96 -2.2% 66
Egypt Egypt 90.1 -1.48% 85
Ethiopia Ethiopia 87.4 -1.52% 89
Fiji Fiji 110 -0.422% 22
Georgia Georgia 103 -0.863% 37
Gibraltar Gibraltar 121 -2.98% 12
Gambia Gambia 87.3 +1.23% 90
Guatemala Guatemala 104 -1.1% 35
Guyana Guyana 99.4 -0.169% 49
Honduras Honduras 86 +0.988% 92
Indonesia Indonesia 102 -0.657% 43
India India 113 +1.15% 18
Jamaica Jamaica 84.4 -7.96% 95
Jordan Jordan 98.1 -0.836% 54
Kazakhstan Kazakhstan 100 -0.288% 46
Kyrgyzstan Kyrgyzstan 96.7 +1.95% 63
Cambodia Cambodia 113 +3.41% 17
Kiribati Kiribati 93.8 -4.55% 73
Laos Laos 97.6 -0.599% 57
Lebanon Lebanon 80.5 -5.23% 97
St. Lucia St. Lucia 101 -1.89% 45
Lesotho Lesotho 88.3 -2.58% 87
Macao SAR China Macao SAR China 85.5 +2.82% 93
Morocco Morocco 116 +0.156% 16
Madagascar Madagascar 133 -1.98% 5
Maldives Maldives 96.7 +2.14% 64
Mali Mali 77.9 +2.51% 100
Montenegro Montenegro 106 +0.242% 31
Mongolia Mongolia 95.3 +0.122% 68
Mozambique Mozambique 122 -1.66% 9
Mauritania Mauritania 112 +33.7% 19
Mauritius Mauritius 110 +11.3% 21
Malawi Malawi 134 +7.69% 4
Malaysia Malaysia 98.1 +0.229% 53
Niger Niger 70.5 -0.63% 103
Nicaragua Nicaragua 107 +0.372% 27
Nepal Nepal 125 +2.4% 7
Nauru Nauru 100 +7.49% 47
Oman Oman 94.7 +6.18% 70
Panama Panama 94.6 -6.33% 71
Peru Peru 107 -0.305% 28
Philippines Philippines 93.7 +1.87% 74
Palau Palau 96.8 +8.31% 62
Puerto Rico Puerto Rico 83 -18.1% 96
Paraguay Paraguay 92.8 -1.04% 80
Palestinian Territories Palestinian Territories 92.4 +0.326% 81
Russia Russia 97.5 -3.67% 59
Rwanda Rwanda 154 +2.82% 2
Senegal Senegal 75.6 -1.22% 101
Solomon Islands Solomon Islands 84.9 -12.2% 94
Sierra Leone Sierra Leone 149 -2.31% 3
El Salvador El Salvador 90.9 +2.39% 82
San Marino San Marino 93.6 +0.671% 75
Somalia Somalia 23.1 -22.3% 104
Suriname Suriname 104 +4.23% 34
Eswatini Eswatini 117 -7.06% 15
Sint Maarten Sint Maarten 163 1
Seychelles Seychelles 97.3 -0.0809% 60
Syria Syria 79.6 +7.01% 98
Turks & Caicos Islands Turks & Caicos Islands 128 -1.59% 6
Chad Chad 99.6 +0.913% 48
Togo Togo 122 -1.76% 11
Thailand Thailand 106 -0.414% 32
Tajikistan Tajikistan 101 -0.619% 44
Timor-Leste Timor-Leste 120 +1.53% 13
Tonga Tonga 102 -2.61% 41
Trinidad & Tobago Trinidad & Tobago 93.2 -5.81% 78
Tunisia Tunisia 105 -0.327% 33
Tuvalu Tuvalu 102 +2.19% 42
Tanzania Tanzania 90.7 +5.51% 83
Uzbekistan Uzbekistan 93.4 -0.673% 77
St. Vincent & Grenadines St. Vincent & Grenadines 109 -0.631% 24
Venezuela Venezuela 109 +14.9% 25
Vietnam Vietnam 122 -0.517% 10
Vanuatu Vanuatu 108 -4% 26
Samoa Samoa 102 -1.88% 39

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SE.PRM.ENRR.MA'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SE.PRM.ENRR.MA'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))