Population ages 65 and above, male

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 7,748 +4.17% 184
Afghanistan Afghanistan 434,103 +3.79% 77
Angola Angola 471,685 +4.64% 74
Albania Albania 214,912 +2.47% 105
Andorra Andorra 6,386 +4.96% 189
United Arab Emirates United Arab Emirates 107,286 +9.11% 133
Argentina Argentina 2,400,798 +2.48% 27
Armenia Armenia 152,223 +6.1% 125
American Samoa American Samoa 1,758 +4.46% 210
Antigua & Barbuda Antigua & Barbuda 4,515 +5.37% 195
Australia Australia 2,249,918 +4.06% 29
Austria Austria 831,667 +3.1% 53
Azerbaijan Azerbaijan 360,964 +7.72% 88
Burundi Burundi 155,084 +3.8% 124
Belgium Belgium 1,092,618 +3.2% 45
Benin Benin 202,935 +3.84% 110
Burkina Faso Burkina Faso 253,655 +3.71% 99
Bangladesh Bangladesh 5,519,060 +4.31% 12
Bulgaria Bulgaria 563,327 +0.939% 67
Bahrain Bahrain 32,245 +6.88% 159
Bahamas Bahamas 19,932 +2.52% 170
Bosnia & Herzegovina Bosnia & Herzegovina 268,904 +2.75% 95
Belarus Belarus 548,139 +3.88% 69
Belize Belize 10,060 +4.66% 179
Bermuda Bermuda 6,012 +3.8% 190
Bolivia Bolivia 312,217 +3.24% 93
Brazil Brazil 10,294,934 +4.39% 5
Barbados Barbados 19,823 +2.75% 171
Brunei Brunei 14,868 +6.08% 175
Bhutan Bhutan 25,482 +2.3% 165
Botswana Botswana 44,968 +3.58% 154
Central African Republic Central African Republic 48,348 +4.82% 149
Canada Canada 3,778,909 +5.5% 19
Switzerland Switzerland 820,965 +4.16% 54
Chile Chile 1,276,376 +4.05% 41
China China 93,044,774 +1.98% 1
Côte d’Ivoire Côte d’Ivoire 413,305 +3.87% 80
Cameroon Cameroon 364,056 +3.46% 87
Congo - Kinshasa Congo - Kinshasa 1,524,685 +3.57% 34
Congo - Brazzaville Congo - Brazzaville 86,090 +5.05% 138
Colombia Colombia 2,291,734 +5.55% 28
Comoros Comoros 17,761 +1.51% 172
Cape Verde Cape Verde 14,126 +5.99% 177
Costa Rica Costa Rica 282,918 +4.87% 94
Cuba Cuba 808,177 +1.73% 55
Curaçao Curaçao 9,816 +2.39% 181
Cayman Islands Cayman Islands 3,088 +7.22% 201
Cyprus Cyprus 91,625 +3.28% 136
Czechia Czechia 960,090 +1.8% 48
Germany Germany 8,593,027 +1.57% 7
Djibouti Djibouti 25,343 +3.81% 166
Dominica Dominica 4,080 +1.44% 196
Denmark Denmark 575,592 +1.83% 64
Dominican Republic Dominican Republic 391,935 +4.87% 84
Algeria Algeria 1,486,882 +4.81% 36
Ecuador Ecuador 679,596 +4.03% 59
Egypt Egypt 2,568,738 +5.04% 25
Eritrea Eritrea 62,977 +2.99% 147
Spain Spain 4,511,778 +3.58% 16
Estonia Estonia 104,001 +2.72% 134
Ethiopia Ethiopia 1,898,562 +4.32% 30
Finland Finland 596,629 +2.45% 63
Fiji Fiji 25,781 +2.82% 164
France France 6,581,276 +2.4% 9
Faroe Islands Faroe Islands 4,715 +0.362% 194
Micronesia (Federated States of) Micronesia (Federated States of) 2,797 +3.55% 204
Gabon Gabon 47,936 +3.26% 151
United Kingdom United Kingdom 6,155,664 +2.48% 11
Georgia Georgia 202,133 +1% 111
Ghana Ghana 571,576 +4.36% 66
Gibraltar Gibraltar 3,214 +3.05% 200
Guinea Guinea 214,779 +3.01% 106
Gambia Gambia 37,753 +5.29% 156
Guinea-Bissau Guinea-Bissau 27,125 +3.02% 163
Equatorial Guinea Equatorial Guinea 33,004 +4.87% 158
Greece Greece 1,077,202 +1.67% 46
Grenada Grenada 6,495 +3.26% 188
Greenland Greenland 3,356 +6.91% 199
Guatemala Guatemala 401,032 +3.6% 83
Guam Guam 9,737 +4.78% 182
Guyana Guyana 23,661 +4.23% 167
Hong Kong SAR China Hong Kong SAR China 800,751 +4.4% 56
Honduras Honduras 212,596 +4.22% 108
Croatia Croatia 367,281 +2.13% 86
Haiti Haiti 236,760 +2.99% 101
Hungary Hungary 772,328 +0.679% 57
Indonesia Indonesia 8,938,940 +4.51% 6
Isle of Man Isle of Man 9,186 +1.95% 183
India India 49,320,623 +4.31% 2
Ireland Ireland 401,947 +3.63% 82
Iran Iran 3,663,114 +5.18% 20
Iraq Iraq 641,682 +2.72% 61
Iceland Iceland 30,679 +4.89% 161
Israel Israel 560,068 +2.46% 68
Italy Italy 6,404,301 +1.94% 10
Jamaica Jamaica 100,969 +3.85% 135
Jordan Jordan 253,740 +5.54% 98
Japan Japan 16,234,342 +0.316% 4
Kazakhstan Kazakhstan 650,683 +6.57% 60
Kenya Kenya 725,293 +4.14% 58
Kyrgyzstan Kyrgyzstan 168,698 +6.31% 120
Cambodia Cambodia 423,418 +5.09% 79
Kiribati Kiribati 2,209 +5.24% 207
St. Kitts & Nevis St. Kitts & Nevis 2,334 +4.06% 206
South Korea South Korea 4,367,863 +5.7% 17
Kuwait Kuwait 82,396 +8.48% 140
Laos Laos 166,090 +4.14% 122
Lebanon Lebanon 258,338 +3.56% 97
Liberia Liberia 85,275 +2.87% 139
Libya Libya 170,101 +4.14% 119
St. Lucia St. Lucia 7,431 +3.57% 185
Liechtenstein Liechtenstein 3,887 +3.63% 197
Sri Lanka Sri Lanka 1,099,874 +2.37% 44
Lesotho Lesotho 31,755 +2% 160
Lithuania Lithuania 200,946 +2.92% 113
Luxembourg Luxembourg 48,227 +4.79% 150
Latvia Latvia 137,808 +1.85% 129
Macao SAR China Macao SAR China 46,964 +6.88% 152
Saint Martin (French part) Saint Martin (French part) 2,078 +0.776% 209
Morocco Morocco 1,464,115 +4.89% 37
Monaco Monaco 6,633 -1.54% 187
Moldova Moldova 136,159 +1.08% 130
Madagascar Madagascar 505,942 +4.71% 72
Maldives Maldives 12,818 +6.67% 178
Mexico Mexico 4,819,266 +4.02% 14
Marshall Islands Marshall Islands 864 +2.01% 213
North Macedonia North Macedonia 138,680 +1.36% 128
Mali Mali 267,344 +2.15% 96
Malta Malta 53,590 +6.11% 148
Myanmar (Burma) Myanmar (Burma) 1,699,764 +3.78% 32
Montenegro Montenegro 45,172 +2.42% 153
Mongolia Mongolia 70,474 +6.65% 144
Northern Mariana Islands Northern Mariana Islands 2,207 +9.86% 208
Mozambique Mozambique 313,502 +0.542% 92
Mauritania Mauritania 76,166 +2.77% 142
Mauritius Mauritius 77,230 +4.35% 141
Malawi Malawi 230,214 +2.16% 102
Malaysia Malaysia 1,321,888 +5.01% 40
Namibia Namibia 41,334 +5.18% 155
New Caledonia New Caledonia 15,558 +4% 174
Niger Niger 327,249 +4.78% 90
Nigeria Nigeria 3,367,184 +2.87% 22
Nicaragua Nicaragua 158,840 +4.43% 123
Netherlands Netherlands 1,718,037 +2.58% 31
Norway Norway 493,832 +2.65% 73
Nepal Nepal 884,458 +1.94% 50
Nauru Nauru 128 +4.07% 215
New Zealand New Zealand 430,366 +4.16% 78
Oman Oman 67,382 +3.97% 145
Pakistan Pakistan 4,977,288 +3.08% 13
Panama Panama 190,795 +4.65% 116
Peru Peru 1,459,955 +3.66% 38
Philippines Philippines 2,645,610 +5.74% 24
Palau Palau 934 +4.94% 212
Papua New Guinea Papua New Guinea 188,262 +4.8% 117
Poland Poland 2,975,118 +3.01% 23
Puerto Rico Puerto Rico 338,529 +1.47% 89
North Korea North Korea 1,385,647 +4.6% 39
Portugal Portugal 1,123,537 +2.95% 43
Paraguay Paraguay 200,896 +3.7% 114
Palestinian Territories Palestinian Territories 90,741 +1.72% 137
French Polynesia French Polynesia 15,592 +5.87% 173
Qatar Qatar 28,945 +16.3% 162
Romania Romania 1,512,970 +1.15% 35
Russia Russia 8,360,431 +3.65% 8
Rwanda Rwanda 226,738 +5.21% 103
Saudi Arabia Saudi Arabia 574,235 +9.75% 65
Sudan Sudan 855,918 +2.47% 51
Senegal Senegal 325,747 +2.28% 91
Singapore Singapore 379,844 +6.78% 85
Solomon Islands Solomon Islands 14,658 +2.65% 176
Sierra Leone Sierra Leone 124,160 +3.26% 131
El Salvador El Salvador 201,208 +1.73% 112
San Marino San Marino 3,532 +4.31% 198
Somalia Somalia 220,324 +4.66% 104
Serbia Serbia 619,355 +0.469% 62
South Sudan South Sudan 148,851 +6.96% 126
São Tomé & Príncipe São Tomé & Príncipe 4,080 +2.69% 196
Suriname Suriname 20,595 +5% 169
Slovakia Slovakia 407,193 +3.05% 81
Slovenia Slovenia 203,547 +2.87% 109
Sweden Sweden 1,027,898 +1.46% 47
Eswatini Eswatini 21,045 +3.19% 168
Sint Maarten Sint Maarten 2,989 +4.22% 202
Seychelles Seychelles 4,826 +4.8% 193
Syria Syria 517,649 +5.77% 71
Turks & Caicos Islands Turks & Caicos Islands 2,360 +4.42% 205
Chad Chad 194,014 +6.73% 115
Togo Togo 143,981 +3.97% 127
Thailand Thailand 4,781,174 +4.25% 15
Tajikistan Tajikistan 180,261 +7.67% 118
Turkmenistan Turkmenistan 119,509 +10.4% 132
Timor-Leste Timor-Leste 34,177 +0.0879% 157
Tonga Tonga 2,949 +0.477% 203
Trinidad & Tobago Trinidad & Tobago 73,246 +4.5% 143
Tunisia Tunisia 529,872 +4.69% 70
Turkey Turkey 3,873,166 +3.03% 18
Tuvalu Tuvalu 249 +2.89% 214
Tanzania Tanzania 832,241 +1.83% 52
Uganda Uganda 441,374 +4.65% 76
Ukraine Ukraine 2,450,672 +3.5% 26
Uruguay Uruguay 212,816 +1.69% 107
United States United States 27,952,606 +4.08% 3
Uzbekistan Uzbekistan 885,578 +5.47% 49
St. Vincent & Grenadines St. Vincent & Grenadines 5,746 +1.88% 192
Venezuela Venezuela 1,179,990 +4.14% 42
British Virgin Islands British Virgin Islands 1,713 +6.2% 211
U.S. Virgin Islands U.S. Virgin Islands 10,005 +0.1% 180
Vietnam Vietnam 3,567,328 +5.8% 21
Vanuatu Vanuatu 6,930 +2.17% 186
Samoa Samoa 5,895 +3.99% 191
Kosovo Kosovo 66,697 -5.19% 146
Yemen Yemen 446,605 +3.91% 75
South Africa South Africa 1,654,783 +4.26% 33
Zambia Zambia 166,778 +5.97% 121
Zimbabwe Zimbabwe 239,385 +0.5% 100

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.65UP.MA.IN'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.65UP.MA.IN'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))