Domestic private health expenditure per capita, PPP (current international US$)

Source: worldbank.org, 03.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 299 +7.01% 106
Angola Angola 94.8 +10.6% 144
Albania Albania 609 -14.2% 65
Andorra Andorra 1,363 +6.45% 21
United Arab Emirates United Arab Emirates 1,555 +10.5% 16
Argentina Argentina 1,076 +18.1% 34
Armenia Armenia 1,500 -1.82% 18
Antigua & Barbuda Antigua & Barbuda 609 +48.8% 64
Australia Australia 1,829 +15.4% 9
Austria Austria 1,797 +6.26% 11
Azerbaijan Azerbaijan 466 -7.22% 80
Burundi Burundi 19 -1.03% 181
Belgium Belgium 1,833 +14.3% 8
Benin Benin 51.5 +0.929% 160
Burkina Faso Burkina Faso 67.9 +12.3% 154
Bangladesh Bangladesh 134 +14% 136
Bulgaria Bulgaria 962 +8.95% 39
Bahrain Bahrain 792 -8.9% 50
Bahamas Bahamas 1,316 +19.5% 22
Bosnia & Herzegovina Bosnia & Herzegovina 572 +3.98% 68
Belarus Belarus 488 +34.6% 75
Belize Belize 158 +15.2% 132
Bolivia Bolivia 210 +8.09% 120
Brazil Brazil 933 +4.23% 40
Barbados Barbados 636 +16.1% 62
Brunei Brunei 95.1 -2.26% 143
Bhutan Bhutan 216 +148% 118
Botswana Botswana 210 +4.21% 119
Central African Republic Central African Republic 52.9 +13.1% 158
Canada Canada 2,013 +8.04% 5
Switzerland Switzerland 6,939 +9.97% 1
Chile Chile 1,572 +19.9% 15
China China 512 +7.68% 71
Côte d’Ivoire Côte d’Ivoire 103 +11.4% 140
Cameroon Cameroon 143 +8.66% 135
Congo - Kinshasa Congo - Kinshasa 21.4 +5.72% 178
Congo - Brazzaville Congo - Brazzaville 39.8 -28.9% 170
Colombia Colombia 473 +8.04% 78
Comoros Comoros 149 +10% 134
Cape Verde Cape Verde 183 +36.5% 129
Costa Rica Costa Rica 595 +9.29% 66
Cuba Cuba 321 +24.6% 100
Cyprus Cyprus 900 +8.37% 44
Czechia Czechia 703 +13.7% 57
Germany Germany 1,663 -0.549% 14
Djibouti Djibouti 50.5 +13.5% 161
Dominica Dominica 263 +29.9% 112
Denmark Denmark 1,191 +0.441% 28
Dominican Republic Dominican Republic 378 +18.4% 92
Algeria Algeria 285 -1.07% 110
Ecuador Ecuador 382 +6.79% 90
Egypt Egypt 424 +12.7% 84
Eritrea Eritrea 47.1 +9.39% 165
Spain Spain 1,240 +4.89% 27
Estonia Estonia 859 +6.52% 45
Ethiopia Ethiopia 39 +17.2% 171
Finland Finland 1,105 +4.25% 31
Fiji Fiji 80.3 -76.3% 148
France France 1,684 +5.05% 13
Micronesia (Federated States of) Micronesia (Federated States of) 45.1 +16.6% 168
Gabon Gabon 149 -0.0926% 133
United Kingdom United Kingdom 1,091 +10% 33
Georgia Georgia 835 +29.1% 46
Ghana Ghana 69.5 -3.23% 152
Guinea Guinea 70.7 +10.4% 151
Gambia Gambia 27.6 +11.3% 173
Guinea-Bissau Guinea-Bissau 127 +16.8% 137
Equatorial Guinea Equatorial Guinea 340 -17.8% 97
Greece Greece 1,507 +23.5% 17
Grenada Grenada 531 +10.1% 70
Guatemala Guatemala 512 +19.9% 72
Guyana Guyana 308 -10.3% 104
Honduras Honduras 310 -4.06% 101
Croatia Croatia 474 +4.13% 77
Haiti Haiti 62.4 +5.82% 155
Hungary Hungary 804 +1.67% 48
Indonesia Indonesia 184 -0.301% 126
India India 163 +12.8% 130
Ireland Ireland 1,879 +9.85% 7
Iran Iran 487 +15.2% 76
Iraq Iraq 223 -12.7% 116
Iceland Iceland 1,026 +5.21% 35
Israel Israel 1,309 +9.74% 23
Italy Italy 1,273 +7.03% 25
Jamaica Jamaica 208 -0.016% 121
Jordan Jordan 434 +3.12% 82
Japan Japan 753 +2.05% 53
Kazakhstan Kazakhstan 432 +14.7% 83
Kenya Kenya 86.7 +11.3% 146
Kyrgyzstan Kyrgyzstan 119 +6.11% 138
Cambodia Cambodia 219 +5% 117
Kiribati Kiribati 10.1 +8.22% 188
St. Kitts & Nevis St. Kitts & Nevis 922 +18.1% 42
South Korea South Korea 1,810 +5.9% 10
Kuwait Kuwait 308 +18.7% 103
Laos Laos 61.7 -26.4% 156
Lebanon Lebanon 382 +21.1% 91
Liberia Liberia 158 +6.07% 131
Libya Libya 295 -3.41% 107
St. Lucia St. Lucia 389 +17.1% 89
Sri Lanka Sri Lanka 277 -0.607% 111
Lesotho Lesotho 47.4 +12.1% 164
Lithuania Lithuania 1,268 +9.49% 26
Luxembourg Luxembourg 925 -0.591% 41
Latvia Latvia 1,101 +8.17% 32
Morocco Morocco 309 +11.7% 102
Monaco Monaco 1,170 +36.4% 29
Moldova Moldova 357 -2.89% 93
Madagascar Madagascar 21.5 +0.00551% 177
Maldives Maldives 466 +32.8% 81
Mexico Mexico 651 +5.79% 60
Marshall Islands Marshall Islands 17.2 +6.27% 183
North Macedonia North Macedonia 783 -7.99% 51
Mali Mali 47.1 +7.99% 166
Malta Malta 1,900 +4.48% 6
Myanmar (Burma) Myanmar (Burma) 183 +3.25% 128
Montenegro Montenegro 1,150 +11.7% 30
Mongolia Mongolia 510 +72% 73
Mozambique Mozambique 19.6 +11.3% 179
Mauritania Mauritania 119 +11.1% 139
Mauritius Mauritius 812 +12.1% 47
Malawi Malawi 23 -15.3% 175
Malaysia Malaysia 633 +15.8% 63
Namibia Namibia 423 +10.5% 85
Niger Niger 31.7 -17.8% 172
Nigeria Nigeria 193 +13.2% 124
Nicaragua Nicaragua 237 +18% 115
Netherlands Netherlands 2,383 +4.45% 4
Norway Norway 1,422 +14.8% 20
Nepal Nepal 188 +50.4% 125
Nauru Nauru 48.2 +4.86% 162
New Zealand New Zealand 978 -11.2% 38
Oman Oman 184 -13.6% 127
Pakistan Pakistan 86.9 -1.31% 145
Panama Panama 1,446 +8.59% 19
Peru Peru 335 +7.33% 98
Philippines Philippines 289 +7.12% 108
Palau Palau 754 -13.8% 52
Papua New Guinea Papua New Guinea 10.7 +10.5% 187
Poland Poland 794 +7.57% 49
Portugal Portugal 1,758 +8.98% 12
Paraguay Paraguay 589 +9.74% 67
Palestinian Territories Palestinian Territories 286 +3.63% 109
Qatar Qatar 413 -2.65% 86
Romania Romania 552 +3.63% 69
Russia Russia 718 +1.03% 56
Rwanda Rwanda 47.6 +13.7% 163
Saudi Arabia Saudi Arabia 675 -16.5% 58
Sudan Sudan 69.2 -8.99% 153
Senegal Senegal 95.2 +3.67% 142
Singapore Singapore 2,888 +19.2% 3
Solomon Islands Solomon Islands 4.39 +1.77% 190
Sierra Leone Sierra Leone 84.5 +3.08% 147
El Salvador El Salvador 398 +8.96% 88
San Marino San Marino 672 +8.4% 59
Somalia Somalia 19.1 +7.66% 180
Serbia Serbia 910 +8.47% 43
South Sudan South Sudan 16.3 +18.7% 185
São Tomé & Príncipe São Tomé & Príncipe 42.1 +2.76% 169
Suriname Suriname 345 +1.13% 95
Slovakia Slovakia 638 +7.58% 61
Slovenia Slovenia 1,293 +10.6% 24
Sweden Sweden 1,010 +2.72% 36
Eswatini Eswatini 206 +0.577% 123
Seychelles Seychelles 408 +12% 87
Syria Syria 207 -14.7% 122
Chad Chad 55.2 -8.93% 157
Togo Togo 101 +7.56% 141
Thailand Thailand 301 +5.05% 105
Tajikistan Tajikistan 238 +3.21% 114
Turkmenistan Turkmenistan 738 +10.6% 55
Timor-Leste Timor-Leste 18.7 +18.4% 182
Trinidad & Tobago Trinidad & Tobago 1,003 +1.16% 37
Tunisia Tunisia 345 +9.07% 94
Turkey Turkey 344 +16% 96
Tuvalu Tuvalu 4.83 +5.14% 189
Tanzania Tanzania 27.6 +11.5% 174
Uganda Uganda 46.1 +13.1% 167
Uruguay Uruguay 753 +24.1% 54
United States United States 5,574 +4.01% 2
Uzbekistan Uzbekistan 471 +14.8% 79
St. Vincent & Grenadines St. Vincent & Grenadines 250 +4.13% 113
Venezuela Venezuela 70.8 +4.88% 150
Vietnam Vietnam 335 +14.7% 99
Vanuatu Vanuatu 14.3 +1% 186
Samoa Samoa 52.3 +3.95% 159
Yemen Yemen 77.7 +2.97% 149
South Africa South Africa 489 +12.7% 74
Zambia Zambia 22.6 +17.8% 176
Zimbabwe Zimbabwe 16.9 +15.4% 184

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SH.XPD.PVTD.PP.CD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SH.XPD.PVTD.PP.CD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))