Access to electricity, urban (% of urban population)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 100 0% 1
Afghanistan Afghanistan 96 +0.104% 18
Angola Angola 77.9 +2.23% 42
Albania Albania 100 0% 1
Andorra Andorra 100 0% 1
United Arab Emirates United Arab Emirates 100 0% 1
Argentina Argentina 100 0% 1
Armenia Armenia 100 0% 1
Antigua & Barbuda Antigua & Barbuda 100 0% 1
Australia Australia 100 0% 1
Austria Austria 100 0% 1
Azerbaijan Azerbaijan 100 0% 1
Burundi Burundi 65 +1.56% 52
Belgium Belgium 100 0% 1
Benin Benin 70.3 -1.13% 48
Burkina Faso Burkina Faso 62.6 +3.47% 54
Bangladesh Bangladesh 99.5 -0.5% 4
Bulgaria Bulgaria 100 0% 1
Bahrain Bahrain 100 0% 1
Bahamas Bahamas 100 0% 1
Bosnia & Herzegovina Bosnia & Herzegovina 100 0% 1
Belarus Belarus 100 0% 1
Belize Belize 99.8 +1.42% 3
Bermuda Bermuda 100 0% 1
Bolivia Bolivia 99.9 -0.1% 2
Brazil Brazil 99.9 -0.1% 2
Barbados Barbados 100 0% 1
Brunei Brunei 100 0% 1
Bhutan Bhutan 100 0% 1
Botswana Botswana 97.7 +2.3% 13
Central African Republic Central African Republic 37.4 +7.78% 60
Canada Canada 100 0% 1
Switzerland Switzerland 100 0% 1
Chile Chile 100 0% 1
China China 100 0% 1
Côte d’Ivoire Côte d’Ivoire 93.9 -1.16% 23
Cameroon Cameroon 95.8 +1.91% 19
Congo - Kinshasa Congo - Kinshasa 55.6 +22.7% 57
Congo - Brazzaville Congo - Brazzaville 69.4 +2.81% 49
Colombia Colombia 100 0% 1
Comoros Comoros 98.3 -1.7% 12
Cape Verde Cape Verde 96.5 +1.26% 16
Costa Rica Costa Rica 100 0% 1
Cuba Cuba 100 0% 1
Curaçao Curaçao 100 0% 1
Cayman Islands Cayman Islands 100 0% 1
Cyprus Cyprus 100 0% 1
Czechia Czechia 100 0% 1
Germany Germany 100 0% 1
Djibouti Djibouti 74.6 +2.47% 47
Dominica Dominica 100 0% 1
Denmark Denmark 100 0% 1
Dominican Republic Dominican Republic 100 +1.21% 1
Algeria Algeria 100 0% 1
Ecuador Ecuador 100 0% 1
Egypt Egypt 100 0% 1
Eritrea Eritrea 77.1 +2.12% 43
Spain Spain 100 0% 1
Estonia Estonia 100 0% 1
Ethiopia Ethiopia 94.7 +0.745% 21
Finland Finland 100 0% 1
Fiji Fiji 100 +2.46% 1
France France 100 0% 1
Faroe Islands Faroe Islands 100 +0.1% 1
Micronesia (Federated States of) Micronesia (Federated States of) 97.3 -1.32% 15
Gabon Gabon 99.2 +0.711% 7
United Kingdom United Kingdom 100 +0.1% 1
Georgia Georgia 100 0% 1
Ghana Ghana 97.5 +2.63% 14
Gibraltar Gibraltar 100 0% 1
Guinea Guinea 92.5 +1.65% 25
Gambia Gambia 85.3 +3.02% 34
Guinea-Bissau Guinea-Bissau 64.3 +5.41% 53
Equatorial Guinea Equatorial Guinea 89 -0.891% 30
Greece Greece 100 0% 1
Greenland Greenland 100 0% 1
Guatemala Guatemala 100 +2.35% 1
Guam Guam 100 0% 1
Guyana Guyana 98.9 +0.918% 9
Hong Kong SAR China Hong Kong SAR China 100 0% 1
Honduras Honduras 100 0% 1
Croatia Croatia 100 0% 1
Haiti Haiti 84 +1.2% 36
Hungary Hungary 100 0% 1
Indonesia Indonesia 100 0% 1
Isle of Man Isle of Man 100 0% 1
India India 100 0% 1
Ireland Ireland 100 0% 1
Iran Iran 100 0% 1
Iraq Iraq 100 0% 1
Iceland Iceland 100 0% 1
Israel Israel 100 0% 1
Italy Italy 100 0% 1
Jamaica Jamaica 98.6 -1.4% 10
Jordan Jordan 100 0% 1
Japan Japan 100 0% 1
Kazakhstan Kazakhstan 100 0% 1
Kenya Kenya 96 -2.04% 18
Kyrgyzstan Kyrgyzstan 100 0% 1
Cambodia Cambodia 99.5 +0.505% 4
Kiribati Kiribati 88.9 +3.37% 31
St. Kitts & Nevis St. Kitts & Nevis 100 0% 1
South Korea South Korea 100 0% 1
Kuwait Kuwait 100 0% 1
Laos Laos 98.6 -1.4% 10
Lebanon Lebanon 100 0% 1
Liberia Liberia 52.7 -1.86% 58
Libya Libya 100 0% 1
St. Lucia St. Lucia 100 0% 1
Liechtenstein Liechtenstein 100 0% 1
Sri Lanka Sri Lanka 100 0% 1
Lesotho Lesotho 85 +1.67% 35
Lithuania Lithuania 100 0% 1
Luxembourg Luxembourg 100 0% 1
Latvia Latvia 100 0% 1
Macao SAR China Macao SAR China 100 0% 1
Saint Martin (French part) Saint Martin (French part) 100 0% 1
Morocco Morocco 100 0% 1
Monaco Monaco 100 0% 1
Moldova Moldova 100 0% 1
Madagascar Madagascar 75.6 +5.59% 45
Maldives Maldives 100 0% 1
Mexico Mexico 100 +0.2% 1
Marshall Islands Marshall Islands 100 +4.06% 1
North Macedonia North Macedonia 100 0% 1
Mali Mali 91.5 -8.22% 26
Malta Malta 100 0% 1
Myanmar (Burma) Myanmar (Burma) 94.6 +0.745% 22
Montenegro Montenegro 100 0% 1
Mongolia Mongolia 100 0% 1
Northern Mariana Islands Northern Mariana Islands 100 0% 1
Mozambique Mozambique 78.9 -0.63% 41
Mauritania Mauritania 93.5 +2.07% 24
Mauritius Mauritius 100 +1.01% 1
Malawi Malawi 57.8 +7.04% 55
Malaysia Malaysia 100 0% 1
Namibia Namibia 75 +0.267% 46
New Caledonia New Caledonia 100 0% 1
Niger Niger 67.4 +1.97% 50
Nigeria Nigeria 85 -4.49% 35
Nicaragua Nicaragua 100 0% 1
Netherlands Netherlands 100 0% 1
Norway Norway 100 0% 1
Nepal Nepal 96 -1.74% 18
Nauru Nauru 100 0% 1
New Zealand New Zealand 100 0% 1
Oman Oman 100 0% 1
Pakistan Pakistan 100 0% 1
Panama Panama 100 +1.01% 1
Peru Peru 99 0% 8
Philippines Philippines 98.4 +0.408% 11
Palau Palau 100 +0.1% 1
Papua New Guinea Papua New Guinea 65.2 +0.154% 51
Poland Poland 100 0% 1
Puerto Rico Puerto Rico 100 0% 1
Portugal Portugal 100 0% 1
Paraguay Paraguay 100 0% 1
Palestinian Territories Palestinian Territories 100 0% 1
French Polynesia French Polynesia 100 0% 1
Qatar Qatar 100 0% 1
Romania Romania 100 0% 1
Russia Russia 100 +0.908% 1
Rwanda Rwanda 99.9 +1.94% 2
Saudi Arabia Saudi Arabia 100 0% 1
Sudan Sudan 87 +3.57% 33
Senegal Senegal 96.1 -0.518% 17
Singapore Singapore 100 0% 1
Solomon Islands Solomon Islands 81.2 +2.78% 39
Sierra Leone Sierra Leone 56.3 +1.81% 56
El Salvador El Salvador 99.4 -0.6% 5
San Marino San Marino 100 0% 1
Somalia Somalia 79 +3% 40
Serbia Serbia 100 0% 1
South Sudan South Sudan 19.1 +27.3% 61
São Tomé & Príncipe São Tomé & Príncipe 81.9 +2.38% 38
Suriname Suriname 100 0% 1
Slovakia Slovakia 100 0% 1
Slovenia Slovenia 100 0% 1
Sweden Sweden 100 0% 1
Eswatini Eswatini 91 +5.69% 27
Sint Maarten Sint Maarten 100 0% 1
Seychelles Seychelles 100 0% 1
Syria Syria 100 0% 1
Turks & Caicos Islands Turks & Caicos Islands 100 0% 1
Chad Chad 48.1 +3.89% 59
Togo Togo 95 -1.55% 20
Thailand Thailand 100 0% 1
Tajikistan Tajikistan 100 +1.01% 1
Turkmenistan Turkmenistan 100 0% 1
Timor-Leste Timor-Leste 100 0% 1
Tonga Tonga 100 0% 1
Trinidad & Tobago Trinidad & Tobago 99.3 -0.7% 6
Tunisia Tunisia 100 0% 1
Turkey Turkey 100 0% 1
Tuvalu Tuvalu 100 0% 1
Tanzania Tanzania 82.4 +10.3% 37
Uganda Uganda 76.4 +6.11% 44
Ukraine Ukraine 100 0% 1
Uruguay Uruguay 100 0% 1
United States United States 100 0% 1
Uzbekistan Uzbekistan 100 0% 1
St. Vincent & Grenadines St. Vincent & Grenadines 100 0% 1
Venezuela Venezuela 100 0% 1
British Virgin Islands British Virgin Islands 100 0% 1
U.S. Virgin Islands U.S. Virgin Islands 100 0% 1
Vietnam Vietnam 100 0% 1
Vanuatu Vanuatu 87.5 -9.79% 32
Samoa Samoa 100 0% 1
Yemen Yemen 96.1 0% 17
South Africa South Africa 90.9 +4.36% 28
Zambia Zambia 89.9 +3.33% 29
Zimbabwe Zimbabwe 84 -5.62% 36

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'EG.ELC.ACCS.UR.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'EG.ELC.ACCS.UR.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))