Publications by Patrick Ford

Excess Mortality and Vaccination Rate Over Time

20.02.2024

install.packages("zoo") ## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.3' ## (as 'lib' is unspecified) library(dplyr) ## ## Attaching package: 'dplyr' ## The following objects are masked from 'package:stats': ## ## filter, lag ## The following objects are masked from 'package:base': ## ## intersect, setdiff, setequa...

16 sym R (2832 sym/12 pcs) 1 img

Cardiovascular Death Rate and Diabetes Prevalence

14.02.2024

# Load necessary libraries library(dplyr) ## ## Attaching package: 'dplyr' ## The following objects are masked from 'package:stats': ## ## filter, lag ## The following objects are masked from 'package:base': ## ## intersect, setdiff, setequal, union library(ggplot2) library(tidyr) # Load the data data <- read.csv("covid.csv") # Convert...

9 sym R (1175 sym/5 pcs) 1 img

Cardiovascular Death Rate & Diabetes Prevalence1: 2020-2024

14.02.2024

# Load necessary libraries library(dplyr) ## ## Attaching package: 'dplyr' ## The following objects are masked from 'package:stats': ## ## filter, lag ## The following objects are masked from 'package:base': ## ## intersect, setdiff, setequal, union library(ggplot2) library(tidyr) # Load the data data <- read.csv("covid.csv") # Convert...

14 sym R (2307 sym/10 pcs) 1 img

Covid4

13.02.2024

4 Plots from the data covid.csv for the period 2020-2024. # Load necessary libraries library(dplyr) ## ## Attaching package: 'dplyr' ## The following objects are masked from 'package:stats': ## ## filter, lag ## The following objects are masked from 'package:base': ## ## intersect, setdiff, setequal, union library(tidyverse) ## ── At...

84 sym R (3474 sym/20 pcs) 1 img

COVID double plot

11.02.2024

# Load necessary libraries library(dplyr) ## ## Attaching package: 'dplyr' ## The following objects are masked from 'package:stats': ## ## filter, lag ## The following objects are masked from 'package:base': ## ## intersect, setdiff, setequal, union library(ggplot2) library(zoo) ## ## Attaching package: 'zoo' ## The following objects ar...

20 sym R (2547 sym/15 pcs) 2 img

Covid

10.02.2024

# Load necessary libraries library(dplyr) ## ## Attaching package: 'dplyr' ## The following objects are masked from 'package:stats': ## ## filter, lag ## The following objects are masked from 'package:base': ## ## intersect, setdiff, setequal, union library(tidyverse) ## ── Attaching core tidyverse packages ────────�...

26 sym R (4409 sym/22 pcs) 1 img

Multi Plot Global CO₂ Emission Predictions: 2030 -2039

31.01.2024

# Load the required packages pacman::p_load(pacman, tidyverse, ggplot2, gridExtra) # Load the data year <- c(1750, 1800, 1850, 1900, 1950, 2000, 2022, 2023) emissions <- c(0.03, 0.07, 0.28, 1.71, 6.73, 20.64, 37.15, 40.9) # Create a data frame data <- data.frame(year, emissions) # Fit a linear regression model with limited data model <- lm(emis...

5 sym Python (3433 sym/1 pcs) 1 img

Global CO₂ Emissions: Linear Regression Model Prediction 2030-2039

30.01.2024

Given the limitations and uncertainties associated with any predictive model, it’s advisable to treat the predictions as one possible scenario rather than a definitive outcome. However, I would hope for the predictions to be closer to reality than not. library(ggplot2) # Load data from CSV file data <- read.csv("GlobalCO2Emissions.csv") # Ensur...

260 sym R (1068 sym/1 pcs) 1 img

Global CO₂ Emissions: Emissions (GtCO₂) vs Year:1750-2023

25.01.2024

# Load the necessary library library(ggplot2) # Load data from the CSV file GlobalCO2Emissions <- read.csv("GlobalCO2Emissions.csv") # Visualise the data using ggplot2 ggplot(GlobalCO2Emissions, aes(x = Year, y = `Emissions`)) + geom_point(aes(fill = factor(Year)), size = 6, shape = 21, color = "#000000") + geom_text(aes(label = sprintf("%.2...

5 sym R (883 sym/1 pcs) 1 img

Global CO₂ Emissions: Emissions (GtCO₂) vs Year 1970-2023

25.01.2024

# Load the necessary library library(ggplot2) # Load data from the CSV file GlobalCO2Emissions <- read.csv("GlobalCO2Emissions.csv") # Select the last six decades lastseven <- tail(GlobalCO2Emissions, 7) # Visualise the data using ggplot2 as a modified pie chart ggplot(lastseven, aes(x = "", y = `Emissions`, fill = factor(Year))) + geom_bar(st...

5 sym R (1119 sym/1 pcs) 1 img