Publications by Patrick Ford

Red Flour Beetles (Tribolium Castaneum) Choices

09.12.2024

# Load necessary libraries pacman::p_load(pacman, readr, dplyr, ggplot2, tidyr, gridExtra) small_arena_file <- "small_arena_choice_test.csv" large_arena_file <- "large_arena_choice_test.csv" wind_tunnel_file <- "wind_tunnel_preference_tests_flours_2022.csv" # Load datasets small_arena_data <- read_csv(small_arena_file) ## Rows: 883 Columns: 7 ## ...

39 sym Python (7733 sym/26 pcs) 10 img

LLM vs Doctors

06.12.2024

# Load necessary libraries pacman::p_load(pacman, readr, dplyr, ggplot2, gridExtra) # Data Frame with Metrics for Groups df <- data.frame( Outcome = c("Diagnostic Performance", "Diagnostic Performance", "Time per Case", "Time per Case", "LLM Alone", "LLM Alone"), Group = c("Conventional Resources", "With LLM", "Conventional Resources", "With L...

9 sym Python (6526 sym/3 pcs) 3 img

World Hum Map

05.12.2024

# Load necessary libraries pacman::p_load(pacman, readr, dplyr, ggplot2, ggmap, sf, patchwork) # Load the data data <- read.csv("hummap_processed.csv") # List unique values in the gender column unique_genders <- unique(data$gender) print(unique_genders) ## [1] "Female" "Male" "Non Binary" # Use a world map overlay world_map <- map_data(...

7 sym 1 img

Children of the Stones; Sentiment Analysis

03.12.2024

# Load necessary libraries pacman::p_load(pacman, tidytext, dplyr, tidyr, ggplot2, readr, topicmodels, gridExtra, wordcloud, RColorBrewer, quanteda, quanteda.textstats, grid) # Define the directory path and list of files file_path <- "/cloud/project" files <- c("Children_of_the_Stones_Full_Circle(7).csv", "Children_of_th...

14 sym Python (5710 sym/7 pcs) 4 img

Sentiment Analysis of Around the World in Eighty Days

26.11.2024

# Load necessary libraries pacman::p_load(pacman, tidytext, dplyr, tidyr, ggplot2, readr, topicmodels, gridExtra, wordcloud, RColorBrewer, quanteda, quanteda.textstats) # Load the CSV file Eighty_data <- read_csv("Around_the_World_in_Eighty_Days.csv") ## Rows: 1703 Columns: 1 ## ── Column specification ─────────────�...

26 sym Python (5647 sym/19 pcs) 4 img

Optimised Travel Routes Between the 33 Most Populated Cities in the World; Nearest Neighbour (NN) vs Ant Colony Optimisation (ACO)

26.11.2024

The routes chosen by the two algorithms in the code—Nearest Neighbour (NN) and Ant Colony Optimisation (ACO)—will behave differently in terms of reproducibility when the code is run multiple times. Nearest Neighbour (NN) The NN algorithm is deterministic, as it selects the next city to visit based on the smallest distance available from the c...

1789 sym Python (8380 sym/9 pcs) 1 img

The World Magnetic Model (WMM); Movement of Magnetic North and South Pole Locations (2000–2025); Globe

21.11.2024

# Load necessary libraries pacman::p_load(pacman, readr, tidyverse, ggplot2, viridis, maps, mapproj) # Function to load, process, and split the dataset load_and_process_data <- function(file_path) { # Load the dataset data <- read.csv(file_path, header = FALSE, col.names = "Values") # Split the 'Values' column into Longitude, Latitude, and ...

7 sym 2 img

The World Magnetic Model (WMM); Movement of Magnetic North and South Pole Locations (2000–2025); 2D

21.11.2024

# Load necessary libraries pacman::p_load(pacman, readr, tidyverse, ggplot2, viridis) # Function to load, process, and split the dataset load_and_process_data <- function(file_path) { # Load the dataset data <- read.csv(file_path, header = FALSE, col.names = "Values") # Split the 'Values' column into Longitude, Latitude, and Year data <- ...

7 sym 2 img

GSMNP Compass Declination

20.11.2024

# Load necessary libraries pacman::p_load(pacman, readr, tidyverse, ggplot2, dplyr, gridExtra, sf, akima, rnaturalearth, rnaturalearthdata) # Load the dataset data <- read.csv("GRSM_COMPASS_DECLINATION_5646692726181302872.csv") # Convert the data into an sf object coordinates <- st_as_sf(data, coords = c("LON", "LAT"), crs = 4326) # Get natural ...

14 sym 5 img

North & South Pole Movements: IGRF 2D

20.11.2024

# Load necessary libraries pacman::p_load(pacman, readr, tidyverse, ggplot2, viridis) # Function to load, process, and split the dataset load_and_process_data <- function(file_path) { # Load the dataset data <- read.csv(file_path, header = FALSE, col.names = "Values") # Split the 'Values' column into Longitude, Latitude, and Year data <- ...

7 sym Python (1885 sym/2 pcs) 2 img