Publications by N Foldnes
leibinger
Enjoyment and PC in three classroom contexts Author N Foldnes Missing knitr::opts_chunk$set(echo=FALSE, message=FALSE, warning=FALSE ) suppressPackageStartupMessages(library(tidyverse, quietly=T)); library(haven); library(knitr) mydata <- read_sav("Datasett Rebekka 2.sav") mydata[!complete.cases(mydata),] # A tibble: 7 × 5 ID gender ...
537 sym 3 img
NARA
nara vs nasjonal prøve Missing We handle missing by using FIML in package lavaan. We assume missing is at random, is this tenable? library(lavaan); library(tidyverse) This is lavaan 0.6-16 lavaan is FREE software! Please report any bugs. ── Attaching core tidyverse packages ──────────────────────...
691 sym 2 img
eba rejection rates
Rejection rates for SB, EBA2 and EBAHalf(1.5) knitr::opts_chunk$set(echo = T, cache=F, message=F, warning = FALSE) library(tidyverse); library(kableExtra) rr.df <- readRDS("rrdf.rds") Small model: Dimension 10 ddim <- 10 condition <- filter(rr.df, grepl("half2|eba2|sb", test) & dim==ddim & n < 4000000) condition$test2 <- str_extract(condition$te...
538 sym 3 img 21 tbl
pca
PCA eksperimenter Missing 6 of 80 rows have missing: data <- haven::read_sav("~/Dropbox (BI Norwegian Business School)/forskning/lesesenteret/oddny/pca/Variabler til PCA Njål.sav") naniar::vis_miss(data) data <- data[complete.cases(data),] We remove 6 obs Correlations corr_matrix <- cor(data) ggcorrplot::ggcorrplot(corr_matrix) PCA data.p...
267 sym 4 img
replicate for oddny
Tables Dependent variable: T2_R_LW_KP Observations 680 Dependent variable T2_R_LW_KP Type Mixed effects generalized linear model Family binomial Link logit Fixed Effects Est. S.E. z val. p (Intercept) -1.60 0.17 -9.47 0.00 cond2 0.07 0.25 0.28 0.78 T1_LR_S -0.35 0.11 -3.21 0.00 T1_PI_S -0.18 0.13 -1.38 0.17 T1_S...
442 sym Python (180 sym/2 pcs) 1 img 20 tbl
elite23
Tips plass Dias Andy Terje Bjelland Nølle Sverre 1 Molde Bodø/Glimt Molde Bodø/Glimt Bodø/Glimt 2 Bodø/Glimt Molde Bodø/Glimt Molde Molde 3 Lillestrøm Lillestrøm Rosenborg Lillestrøm Lillestrøm 4 Brann Viking Brann Rosenborg Rosenborg 5 Viking Brann Lillestrøm Viking Vålerenga 6 Rosenborg Rosenborg...
46 sym 2 img 1 tbl
Modality Pirls
Modality PIRLS Items and blocks We have the following block names, items, and number of participants BlockNam mod num_items num_participants How Did We Learn to Fly? Digital 17 465 How Did We Learn to Fly? Paper 17 423 Icelandic Horses Digital 15 465 Icelandic Horses Paper 15 409 Oliver and The Griffin Digital 13 407 Oliver and The Griffin...
848 sym 3 img 5 tbl
Eliten22
Tips plass Andy nølledølle Dias Sverre Terje Bjelland 1 Bodø/Glimt Bodø/Glimt Bodø/Glimt Bodø/Glimt Bodø/Glimt 2 Molde Viking Viking Molde Molde 3 Rosenborg Molde Molde Odd Viking 4 Viking Rosenborg Rosenborg Viking Rosenborg 5 Vålerenga Lillestrøm Vålerenga Rosenborg Lillestrøm 6 Lillestrøm Odd S...
75 sym 2 img 2 tbl
MST bm vokabular
Structure and module numbering There are 6 modules (each with 6 items) numbered as follows stage1 stage2 stage3 M6 M3 M1 M5 M2 M4 Plots of theoretical and empirical modells Theoretical probabilities The overall final probabilites and probabilities as a function of \(\theta\) risk low med high 8.4 17.1 27.9 46.3 Items and cutoffs The c...
372 sym 3 img 3 tbl
PAP facial textual drivers
What drives PAP scores Author N Foldnes Intro We consider total_score_pap, i.e., quality of team output as assessed by expert team. The predictor variables are textual and facial. We conduct analysis on the team level, aggregating follower behaviour into one mean value. We have far too many variables: [1] "y" "WC_F" ...
1161 sym 3 img 7 tbl