Survival to age 65, male (% of cohort)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 80.9 +0.535% 69
Afghanistan Afghanistan 63.6 +1.58% 159
Angola Angola 58.4 +0.99% 188
Albania Albania 84.8 +1.8% 50
Andorra Andorra 92.2 +0.0183% 5
United Arab Emirates United Arab Emirates 93.6 +1.85% 4
Argentina Argentina 80.2 +2.51% 73
Armenia Armenia 72.6 +3.58% 110
American Samoa American Samoa 69.6 +0.613% 135
Antigua & Barbuda Antigua & Barbuda 79.5 +0.168% 78
Australia Australia 89.1 +3.68% 23
Austria Austria 87.8 +1.05% 32
Azerbaijan Azerbaijan 76 +3.81% 95
Burundi Burundi 58.2 +3.03% 190
Belgium Belgium 87.8 +1.07% 33
Benin Benin 55.8 +0.244% 201
Burkina Faso Burkina Faso 54.6 +0.99% 203
Bangladesh Bangladesh 76.9 +1.36% 92
Bulgaria Bulgaria 72.8 +4.54% 104
Bahrain Bahrain 90.5 +0.533% 16
Bahamas Bahamas 72.2 +0.104% 113
Bosnia & Herzegovina Bosnia & Herzegovina 79.8 +3.04% 74
Belarus Belarus 65.6 +0.333% 153
Belize Belize 71 +4.11% 121
Bermuda Bermuda 86.8 +0.505% 38
Bolivia Bolivia 65 +4.82% 157
Brazil Brazil 75.8 +2.67% 96
Barbados Barbados 79.4 +0.639% 80
Brunei Brunei 78.1 +8.71% 86
Bhutan Bhutan 76.1 +0.503% 94
Botswana Botswana 65.5 +1.2% 156
Central African Republic Central African Republic 44.7 +13,936% 215
Canada Canada 87 +4.88% 36
Switzerland Switzerland 91 +1.12% 12
Chile Chile 84.9 +4.37% 49
China China 82 -0.136% 64
Côte d’Ivoire Côte d’Ivoire 53 +1.2% 206
Cameroon Cameroon 58 +5.33% 192
Congo - Kinshasa Congo - Kinshasa 56.4 +3.69% 196
Congo - Brazzaville Congo - Brazzaville 60.1 +3.22% 183
Colombia Colombia 81.9 +3.18% 65
Comoros Comoros 63.3 +0.757% 162
Cape Verde Cape Verde 77.6 +0.332% 88
Costa Rica Costa Rica 83.9 +2.26% 54
Cuba Cuba 79.7 +0.642% 76
Curaçao Curaçao 77.7 +0.161% 87
Cayman Islands Cayman Islands 82.9 +0.494% 59
Cyprus Cyprus 89.8 +1.78% 20
Czechia Czechia 83.7 +1.35% 56
Germany Germany 86.2 +1.67% 44
Djibouti Djibouti 62.3 +1.34% 168
Dominica Dominica 70 +0.498% 132
Denmark Denmark 89 +0.936% 25
Dominican Republic Dominican Republic 73.6 -0.186% 101
Algeria Algeria 84.6 +0.401% 51
Ecuador Ecuador 79.5 +2.01% 79
Egypt Egypt 71.8 +2.46% 116
Eritrea Eritrea 67.2 +2.85% 147
Spain Spain 88.7 +2.54% 27
Estonia Estonia 78.7 +3.39% 83
Ethiopia Ethiopia 63 +1.12% 165
Finland Finland 86.9 +1% 37
Fiji Fiji 60.2 +1.15% 180
France France 86.4 +0.725% 42
Faroe Islands Faroe Islands 88.4 +1.95% 29
Micronesia (Federated States of) Micronesia (Federated States of) 56.3 +0.247% 198
Gabon Gabon 63.2 +2.08% 163
United Kingdom United Kingdom 86.3 +0.406% 43
Georgia Georgia 67.6 +0.434% 145
Ghana Ghana 60.8 +0.431% 175
Gibraltar Gibraltar 89.1 +0.0495% 24
Guinea Guinea 57.2 +0.862% 195
Gambia Gambia 63.1 +3.48% 164
Guinea-Bissau Guinea-Bissau 58 +1.36% 191
Equatorial Guinea Equatorial Guinea 59.1 +0.8% 187
Greece Greece 86.6 +4.66% 41
Grenada Grenada 74.1 +0.0464% 100
Greenland Greenland 68.5 -0.0583% 141
Guatemala Guatemala 71.7 +4.97% 118
Guam Guam 72.9 +0.387% 103
Guyana Guyana 61.6 +0.935% 170
Hong Kong SAR China Hong Kong SAR China 90.1 +1.76% 17
Honduras Honduras 72.4 +0.411% 111
Croatia Croatia 81.6 +0.972% 67
Haiti Haiti 57.6 +4.18% 193
Hungary Hungary 75.3 +2.44% 97
Indonesia Indonesia 70.2 +0.397% 129
Isle of Man Isle of Man 86.8 +0.0606% 39
India India 71.7 +0.661% 117
Ireland Ireland 88.7 +0.433% 26
Iran Iran 83.3 +1.73% 57
Iraq Iraq 74.2 +0.859% 99
Iceland Iceland 87.2 +6.62% 35
Israel Israel 87.4 -2.19% 34
Italy Italy 90.5 +3.08% 15
Jamaica Jamaica 69.3 -0.142% 137
Jordan Jordan 84.2 +1.32% 53
Japan Japan 90 +0.534% 18
Kazakhstan Kazakhstan 70 +4.13% 133
Kenya Kenya 51.7 +0.541% 207
Kyrgyzstan Kyrgyzstan 67 +0.785% 148
Cambodia Cambodia 69.2 +0.396% 138
Kiribati Kiribati 63.8 +0.387% 158
St. Kitts & Nevis St. Kitts & Nevis 67.8 +6.65% 144
South Korea South Korea 92 +2.78% 7
Kuwait Kuwait 92.1 +2.16% 6
Laos Laos 67.4 +0.627% 146
Lebanon Lebanon 84.3 -0.457% 52
Liberia Liberia 56 +0.505% 199
Libya Libya 70 -7.02% 134
St. Lucia St. Lucia 70.2 +0.114% 130
Liechtenstein Liechtenstein 91.9 +0.272% 8
Sri Lanka Sri Lanka 79.3 +0.57% 81
Lesotho Lesotho 38.8 +2.66% 216
Lithuania Lithuania 70.4 +4.19% 128
Luxembourg Luxembourg 88.5 +0.0585% 28
Latvia Latvia 71.2 +4.77% 120
Macao SAR China Macao SAR China 89.4 -1.31% 21
Saint Martin (French part) Saint Martin (French part) 85.7 -0.0294% 45
Morocco Morocco 79.6 +0.248% 77
Monaco Monaco 94.2 +0.317% 1
Moldova Moldova 60.2 -2.93% 179
Madagascar Madagascar 60.1 +2.37% 181
Maldives Maldives 91.5 +0.467% 10
Mexico Mexico 72.7 +3.39% 107
Marshall Islands Marshall Islands 60.9 +0.588% 172
North Macedonia North Macedonia 81.8 +0.809% 66
Mali Mali 55.9 +1.24% 200
Malta Malta 90.8 +2.17% 14
Myanmar (Burma) Myanmar (Burma) 60.8 +1.6% 173
Montenegro Montenegro 78.5 +2.47% 85
Mongolia Mongolia 62.3 +0.672% 167
Northern Mariana Islands Northern Mariana Islands 85.3 +0.497% 47
Mozambique Mozambique 54 +2.27% 204
Mauritania Mauritania 66.7 +0.396% 150
Mauritius Mauritius 72.1 +2.93% 114
Malawi Malawi 59.7 +6.49% 184
Malaysia Malaysia 77.5 +2.97% 90
Namibia Namibia 57.3 +15.8% 194
New Caledonia New Caledonia 82.2 +2.84% 62
Niger Niger 60.1 +3.25% 182
Nigeria Nigeria 47.3 +1.23% 213
Nicaragua Nicaragua 75.3 +0.572% 98
Netherlands Netherlands 89.9 +0.278% 19
Norway Norway 91.4 +1.36% 11
Nepal Nepal 70.8 +0.647% 124
Nauru Nauru 48.3 +1.31% 211
New Zealand New Zealand 88.2 +0.745% 30
Oman Oman 89.1 +2.18% 22
Pakistan Pakistan 65.9 +0.479% 152
Panama Panama 82.6 +0.359% 60
Peru Peru 79.8 -0.83% 75
Philippines Philippines 65.6 +1.2% 154
Palau Palau 65.6 +2.05% 155
Papua New Guinea Papua New Guinea 59.6 +3.97% 185
Poland Poland 77.5 +1.42% 89
Puerto Rico Puerto Rico 83.1 +6.99% 58
North Korea North Korea 76.4 +0.0688% 93
Portugal Portugal 85.5 +2.03% 46
Paraguay Paraguay 72.4 +4.73% 112
Palestinian Territories Palestinian Territories 53.7 -34.1% 205
French Polynesia French Polynesia 91.9 +0.243% 9
Qatar Qatar 93.7 +0.537% 3
Romania Romania 72.1 +1.81% 115
Russia Russia 60.6 -1.06% 177
Rwanda Rwanda 62.7 +0.736% 166
Saudi Arabia Saudi Arabia 85.1 +2.56% 48
Sudan Sudan 61.7 +1.05% 169
Senegal Senegal 68 +3.31% 142
Singapore Singapore 87.9 +2.54% 31
Solomon Islands Solomon Islands 70.9 +0.192% 123
Sierra Leone Sierra Leone 58.3 +1.59% 189
El Salvador El Salvador 63.5 +0.335% 161
San Marino San Marino 94 +0.07% 2
Somalia Somalia 51.5 +14.3% 209
Serbia Serbia 76.9 +0.284% 91
South Sudan South Sudan 47.7 +2.2% 212
São Tomé & Príncipe São Tomé & Príncipe 61.4 +1.68% 171
Suriname Suriname 70.8 +1.03% 126
Slovakia Slovakia 78.9 +2.99% 82
Slovenia Slovenia 86.8 +1.15% 40
Sweden Sweden 90.8 +0.021% 13
Eswatini Eswatini 51.6 +5.28% 208
Sint Maarten Sint Maarten 80.6 +0.283% 71
Seychelles Seychelles 70.9 +1.74% 122
Syria Syria 73.1 -1.38% 102
Turks & Caicos Islands Turks & Caicos Islands 82.5 +0.158% 61
Chad Chad 45.1 +1.87% 214
Togo Togo 60.8 +1.34% 174
Thailand Thailand 70.8 +3.4% 125
Tajikistan Tajikistan 72.8 +0.644% 105
Turkmenistan Turkmenistan 67 +0.628% 149
Timor-Leste Timor-Leste 66.4 +0.906% 151
Tonga Tonga 68.8 +0.583% 139
Trinidad & Tobago Trinidad & Tobago 72.6 +0.438% 109
Tunisia Tunisia 81 +0.904% 68
Turkey Turkey 80.7 -0.218% 70
Tuvalu Tuvalu 56.4 +0.793% 197
Tanzania Tanzania 59.2 -0.331% 186
Uganda Uganda 60.4 +1.84% 178
Ukraine Ukraine 60.8 +2.11% 176
Uruguay Uruguay 78.5 +4.11% 84
United States United States 80.5 +3.82% 72
Uzbekistan Uzbekistan 69.4 +0.169% 136
St. Vincent & Grenadines St. Vincent & Grenadines 67.8 +0.112% 143
Venezuela Venezuela 70.1 -0.191% 131
British Virgin Islands British Virgin Islands 82 +0.152% 63
U.S. Virgin Islands U.S. Virgin Islands 72.7 +1.09% 108
Vietnam Vietnam 72.7 +0.283% 106
Vanuatu Vanuatu 70.5 +0.44% 127
Samoa Samoa 71.2 +0.332% 119
Kosovo Kosovo 83.9 +1.32% 55
Yemen Yemen 68.5 +5.57% 140
South Africa South Africa 55 +3.86% 202
Zambia Zambia 63.6 +4.9% 160
Zimbabwe Zimbabwe 50.3 +1.17% 210

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.DYN.TO65.MA.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.DYN.TO65.MA.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))