School enrollment, primary (% gross)

Source: worldbank.org, 01.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Albania Albania 93.7 -2.76% 71
Andorra Andorra 97.6 +8.29% 53
United Arab Emirates United Arab Emirates 106 +13.3% 29
Armenia Armenia 93.8 +0.975% 68
Azerbaijan Azerbaijan 102 +2.18% 38
Burkina Faso Burkina Faso 72.3 -12.2% 101
Bangladesh Bangladesh 112 -5.15% 19
Bahrain Bahrain 93.7 +1.51% 70
Bahamas Bahamas 77.9 -16.9% 99
Bosnia & Herzegovina Bosnia & Herzegovina 87.2 -0.666% 87
Belarus Belarus 94.7 +0.0251% 64
Belize Belize 97 -2.99% 57
Bermuda Bermuda 86.3 +1.03% 91
Bolivia Bolivia 98.9 -0.667% 48
Barbados Barbados 93.4 -2.23% 74
Brunei Brunei 93.5 -1.14% 73
China China 99.3 -0.846% 46
Côte d’Ivoire Côte d’Ivoire 102 +7.4% 40
Cameroon Cameroon 113 +1.74% 16
Congo - Kinshasa Congo - Kinshasa 120 -2.01% 13
Congo - Brazzaville Congo - Brazzaville 89 +1.52% 85
Comoros Comoros 94.7 +11.1% 66
Cuba Cuba 98.4 -1.47% 50
Curaçao Curaçao 109 -3.69% 23
Cayman Islands Cayman Islands 88 +0.34% 86
Dominica Dominica 89.9 -2.17% 84
Dominican Republic Dominican Republic 94.7 -5.75% 65
Algeria Algeria 109 +0.386% 24
Ecuador Ecuador 97.3 -2.3% 55
Egypt Egypt 90.3 -1.4% 83
Ethiopia Ethiopia 84.5 -1.24% 93
Fiji Fiji 108 -0.367% 26
Georgia Georgia 103 -1.16% 34
Gibraltar Gibraltar 123 -2.98% 7
Gambia Gambia 93.7 +1.54% 69
Guatemala Guatemala 103 -0.828% 35
Guyana Guyana 99 -0.771% 47
Honduras Honduras 86.6 +0.799% 88
Indonesia Indonesia 100 -0.414% 45
India India 112 +0.852% 17
Jamaica Jamaica 84.5 -6.92% 94
Jordan Jordan 98.3 -0.245% 51
Kazakhstan Kazakhstan 101 -0.385% 44
Kyrgyzstan Kyrgyzstan 96.2 +2.11% 59
Cambodia Cambodia 111 +1.3% 20
Kiribati Kiribati 93.4 -5.21% 76
Laos Laos 96.8 -0.474% 58
Lebanon Lebanon 79.8 -4.51% 97
St. Lucia St. Lucia 101 -2.89% 41
Lesotho Lesotho 86.4 -2.53% 90
Macao SAR China Macao SAR China 86.4 +1.71% 89
Morocco Morocco 114 +0.265% 14
Madagascar Madagascar 136 -1.74% 4
Maldives Maldives 97.5 +2.28% 54
Mali Mali 74.4 +2.43% 100
Montenegro Montenegro 106 +0.462% 30
Mongolia Mongolia 95.8 +0.223% 61
Mozambique Mozambique 120 -0.968% 12
Mauritania Mauritania 112 +28.9% 18
Mauritius Mauritius 111 +11% 21
Malawi Malawi 135 +7.12% 5
Malaysia Malaysia 98.8 +1.11% 49
Niger Niger 68.5 +0.285% 102
Nicaragua Nicaragua 106 +0.448% 31
Nepal Nepal 123 +3.52% 9
Nauru Nauru 101 +6% 42
Oman Oman 95.6 +6.07% 62
Panama Panama 94.6 -6.27% 67
Peru Peru 107 -0.161% 27
Philippines Philippines 93.4 +1.67% 75
Palau Palau 95.9 +8.63% 60
Puerto Rico Puerto Rico 83.1 -17.3% 95
Paraguay Paraguay 92.4 -0.915% 79
Palestinian Territories Palestinian Territories 92.1 +0.349% 80
Russia Russia 97.7 -3.35% 52
Rwanda Rwanda 152 +2.11% 3
Senegal Senegal 82.6 -0.826% 96
Solomon Islands Solomon Islands 84.7 -11.2% 92
Sierra Leone Sierra Leone 153 -2.37% 2
El Salvador El Salvador 91.1 +1.93% 82
San Marino San Marino 95.1 +1.26% 63
Somalia Somalia 21.2 +151% 104
Suriname Suriname 66 -32.4% 103
Eswatini Eswatini 114 -6.06% 15
Sint Maarten Sint Maarten 257 1
Seychelles Seychelles 97.1 -0.644% 56
Syria Syria 79.6 +7.1% 98
Turks & Caicos Islands Turks & Caicos Islands 126 +2.9% 6
Chad Chad 91.8 +1.56% 81
Togo Togo 120 -1.82% 11
Thailand Thailand 103 -1.53% 33
Tajikistan Tajikistan 101 -0.716% 43
Timor-Leste Timor-Leste 123 +2.06% 8
Tonga Tonga 103 -3.66% 36
Trinidad & Tobago Trinidad & Tobago 92.8 -5% 78
Tunisia Tunisia 104 -0.368% 32
Tuvalu Tuvalu 102 +3.54% 39
Tanzania Tanzania 93.1 +5.46% 77
Uzbekistan Uzbekistan 93.5 -0.448% 72
St. Vincent & Grenadines St. Vincent & Grenadines 110 -0.771% 22
Venezuela Venezuela 108 +13.6% 25
Vietnam Vietnam 122 -0.519% 10
Vanuatu Vanuatu 107 -3.61% 28
Samoa Samoa 102 -1.76% 37

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SE.PRM.ENRR'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SE.PRM.ENRR'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))