Population ages 20-24, male (% of male population)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 6.81 +4.15% 135
Afghanistan Afghanistan 10.1 -0.285% 8
Angola Angola 8.58 +0.967% 75
Albania Albania 7.13 -3.62% 124
Andorra Andorra 5.75 -0.229% 174
United Arab Emirates United Arab Emirates 7.91 -3.49% 98
Argentina Argentina 7.81 -0.562% 104
Armenia Armenia 6.53 +1.11% 144
American Samoa American Samoa 8.35 +6.62% 87
Antigua & Barbuda Antigua & Barbuda 7.59 -1.72% 111
Australia Australia 6.25 -1.46% 159
Austria Austria 5.35 -1.77% 197
Azerbaijan Azerbaijan 6.6 +0.926% 142
Burundi Burundi 8.5 +3.07% 78
Belgium Belgium 5.89 +0.227% 169
Benin Benin 9.11 +0.122% 53
Burkina Faso Burkina Faso 9.46 +0.99% 32
Bangladesh Bangladesh 8.76 +1.27% 71
Bulgaria Bulgaria 5.01 +1.06% 210
Bahrain Bahrain 6.66 -3.13% 139
Bahamas Bahamas 7.37 -1.21% 118
Bosnia & Herzegovina Bosnia & Herzegovina 5.83 -1.15% 171
Belarus Belarus 5.25 -0.505% 201
Belize Belize 9.71 -1.92% 22
Bermuda Bermuda 5.43 +0.482% 189
Bolivia Bolivia 9.13 -0.906% 50
Brazil Brazil 7.64 -2.25% 110
Barbados Barbados 7.03 -0.865% 128
Brunei Brunei 7.7 -3.44% 106
Bhutan Bhutan 8.93 -0.619% 62
Botswana Botswana 9.78 -1.95% 21
Central African Republic Central African Republic 10.2 +1.68% 7
Canada Canada 6.33 -2.24% 157
Switzerland Switzerland 5.27 -1.67% 200
Chile Chile 6.86 -2.92% 133
China China 5.92 -0.269% 167
Côte d’Ivoire Côte d’Ivoire 8.94 +0.948% 61
Cameroon Cameroon 9.07 +0.56% 56
Congo - Kinshasa Congo - Kinshasa 8.69 -0.255% 73
Congo - Brazzaville Congo - Brazzaville 8.55 +1.5% 76
Colombia Colombia 8.44 -2.03% 83
Comoros Comoros 9.2 -0.0753% 47
Cape Verde Cape Verde 8.44 +0.57% 84
Costa Rica Costa Rica 7.59 -2.46% 112
Cuba Cuba 6.23 -2.08% 160
Curaçao Curaçao 7.55 -4.57% 113
Cayman Islands Cayman Islands 5.09 -0.645% 206
Cyprus Cyprus 5.55 -1.91% 183
Czechia Czechia 5.16 +0.0353% 205
Germany Germany 5.22 -2.55% 202
Djibouti Djibouti 9.9 +1.13% 15
Dominica Dominica 6.68 -1.85% 138
Denmark Denmark 6.34 -1.09% 156
Dominican Republic Dominican Republic 8.67 -0.751% 74
Algeria Algeria 6.19 +0.644% 162
Ecuador Ecuador 8.75 -1.2% 72
Egypt Egypt 8.46 -0.125% 81
Eritrea Eritrea 10.4 +1.41% 4
Spain Spain 5.43 +1.6% 190
Estonia Estonia 5.17 +1.03% 204
Ethiopia Ethiopia 10 +0.227% 10
Finland Finland 5.72 +0.914% 177
Fiji Fiji 8 +0.0147% 96
France France 6.47 +1.05% 151
Faroe Islands Faroe Islands 7.03 +3.7% 127
Micronesia (Federated States of) Micronesia (Federated States of) 9.8 -1.97% 18
Gabon Gabon 8.01 +0.353% 95
United Kingdom United Kingdom 6.01 -1.22% 164
Georgia Georgia 6.12 -0.592% 163
Ghana Ghana 9.12 +0.551% 52
Gibraltar Gibraltar 6.53 +1.09% 145
Guinea Guinea 9.64 -0.842% 25
Gambia Gambia 9.41 -0.11% 36
Guinea-Bissau Guinea-Bissau 9.59 +0.248% 28
Equatorial Guinea Equatorial Guinea 7.68 +1.57% 109
Greece Greece 5.52 -0.0702% 185
Grenada Grenada 7.23 -2.71% 123
Greenland Greenland 6 -4.45% 166
Guatemala Guatemala 10.2 -0.671% 6
Guam Guam 7.02 -2.08% 129
Guyana Guyana 8.99 -3.96% 59
Hong Kong SAR China Hong Kong SAR China 4.14 -5.68% 216
Honduras Honduras 9.92 -1.06% 13
Croatia Croatia 5.42 -0.873% 192
Haiti Haiti 9.43 -0.68% 35
Hungary Hungary 5.59 +0.21% 180
Indonesia Indonesia 7.89 -0.883% 100
Isle of Man Isle of Man 5.6 +1.15% 179
India India 9.11 -0.609% 54
Ireland Ireland 6.62 +1.31% 141
Iran Iran 6.4 -0.557% 154
Iraq Iraq 9.4 -0.505% 38
Iceland Iceland 6.5 -0.499% 149
Israel Israel 7.7 +0.899% 107
Italy Italy 5.39 +0.108% 193
Jamaica Jamaica 8.48 -2.07% 80
Jordan Jordan 8.43 -0.199% 85
Japan Japan 5.17 +0.911% 203
Kazakhstan Kazakhstan 6.19 +0.894% 161
Kenya Kenya 9.79 +1.41% 20
Kyrgyzstan Kyrgyzstan 7.36 -0.0203% 119
Cambodia Cambodia 8.1 +0.801% 93
Kiribati Kiribati 8.42 -4.4% 86
St. Kitts & Nevis St. Kitts & Nevis 6.92 -4.2% 131
South Korea South Korea 5.75 -4.36% 175
Kuwait Kuwait 4.18 -0.368% 215
Laos Laos 9.26 -1.98% 43
Lebanon Lebanon 8.86 +0.557% 66
Liberia Liberia 9.52 +1.23% 30
Libya Libya 8.28 +1.5% 89
St. Lucia St. Lucia 7.92 -2.63% 97
Liechtenstein Liechtenstein 5.46 +1.39% 188
Sri Lanka Sri Lanka 7.71 +0.595% 105
Lesotho Lesotho 9.67 +0.679% 23
Lithuania Lithuania 5.92 -1.96% 168
Luxembourg Luxembourg 5.7 -2.99% 178
Latvia Latvia 5.28 +2.31% 199
Macao SAR China Macao SAR China 5.34 -5.64% 198
Saint Martin (French part) Saint Martin (French part) 5.56 -3.93% 181
Morocco Morocco 7.83 -0.726% 102
Monaco Monaco 4.86 -0.675% 212
Moldova Moldova 5.38 +2.17% 195
Madagascar Madagascar 9.55 -1.03% 29
Maldives Maldives 5.86 -13.3% 170
Mexico Mexico 8.8 -0.235% 69
Marshall Islands Marshall Islands 8.93 +3.49% 63
North Macedonia North Macedonia 6 -1.17% 165
Mali Mali 9.09 +1.26% 55
Malta Malta 4.82 -4.24% 213
Myanmar (Burma) Myanmar (Burma) 8.45 -0.702% 82
Montenegro Montenegro 6.51 +0.0966% 148
Mongolia Mongolia 6.41 -1.34% 152
Northern Mariana Islands Northern Mariana Islands 6.39 +3.91% 155
Mozambique Mozambique 9.5 -0.529% 31
Mauritania Mauritania 8.9 +1.1% 64
Mauritius Mauritius 7.45 -1.06% 115
Malawi Malawi 9.92 +0.872% 12
Malaysia Malaysia 8.82 -0.581% 67
Namibia Namibia 8.88 -2.42% 65
New Caledonia New Caledonia 7.39 +1.2% 117
Niger Niger 9.21 +0.94% 46
Nigeria Nigeria 9.46 +1.86% 33
Nicaragua Nicaragua 9.21 -1.19% 45
Netherlands Netherlands 6.64 -0.592% 140
Norway Norway 6.26 +0.47% 158
Nepal Nepal 9.84 -0.876% 16
Nauru Nauru 7.31 -0.679% 120
New Zealand New Zealand 6.52 -0.462% 146
Oman Oman 8.26 +3.15% 90
Pakistan Pakistan 9.41 -0.757% 37
Panama Panama 8.05 -0.476% 94
Peru Peru 8.24 -0.287% 91
Philippines Philippines 9.36 -0.814% 41
Palau Palau 5.38 +5.18% 194
Papua New Guinea Papua New Guinea 9.37 -0.155% 40
Poland Poland 4.98 -2.78% 211
Puerto Rico Puerto Rico 7.04 +0.293% 126
North Korea North Korea 7.01 -2.71% 130
Portugal Portugal 5.78 -0.0268% 173
Paraguay Paraguay 8.48 -2.56% 79
Palestinian Territories Palestinian Territories 8.8 -0.579% 68
French Polynesia French Polynesia 7.44 -0.613% 116
Qatar Qatar 5.04 -8.38% 209
Romania Romania 5.55 +0.613% 182
Russia Russia 5.5 +2.66% 186
Rwanda Rwanda 9.59 +3.28% 27
Saudi Arabia Saudi Arabia 7.11 -1.26% 125
Sudan Sudan 9.64 -0.963% 24
Senegal Senegal 9.63 +0.189% 26
Singapore Singapore 9.79 -4.46% 19
Solomon Islands Solomon Islands 9.23 +0.719% 44
Sierra Leone Sierra Leone 9.83 +0.0232% 17
El Salvador El Salvador 10.3 -3.87% 5
San Marino San Marino 5.52 -0.169% 184
Somalia Somalia 9.19 -0.487% 48
Serbia Serbia 5.49 +0.49% 187
South Sudan South Sudan 10.4 +4.91% 3
São Tomé & Príncipe São Tomé & Príncipe 9.32 +2.87% 42
Suriname Suriname 8.79 -1.43% 70
Slovakia Slovakia 5.06 -1.71% 208
Slovenia Slovenia 4.81 -1.6% 214
Sweden Sweden 5.82 -0.258% 172
Eswatini Eswatini 9.91 -1.45% 14
Sint Maarten Sint Maarten 5.42 +8.38% 191
Seychelles Seychelles 6.52 -3.58% 147
Syria Syria 11.8 +0.992% 1
Turks & Caicos Islands Turks & Caicos Islands 5.38 -4.01% 196
Chad Chad 9.13 +0.964% 51
Togo Togo 8.95 +0.333% 60
Thailand Thailand 6.82 -0.569% 134
Tajikistan Tajikistan 8.13 -5.3% 92
Turkmenistan Turkmenistan 7.24 -5.41% 122
Timor-Leste Timor-Leste 10.5 +1.73% 2
Tonga Tonga 9.16 +5.5% 49
Trinidad & Tobago Trinidad & Tobago 6.48 -0.877% 150
Tunisia Tunisia 6.75 -0.452% 136
Turkey Turkey 7.69 -3.73% 108
Tuvalu Tuvalu 7.82 -4.21% 103
Tanzania Tanzania 9.39 +0.161% 39
Uganda Uganda 10.1 -0.447% 9
Ukraine Ukraine 5.08 +4.86% 207
Uruguay Uruguay 7.51 -1.13% 114
United States United States 6.73 +0.486% 137
Uzbekistan Uzbekistan 6.9 -3.02% 132
St. Vincent & Grenadines St. Vincent & Grenadines 7.29 -2.56% 121
Venezuela Venezuela 8.5 +3.34% 77
British Virgin Islands British Virgin Islands 6.4 +1.96% 153
U.S. Virgin Islands U.S. Virgin Islands 5.73 +3.78% 176
Vietnam Vietnam 6.57 +0.951% 143
Vanuatu Vanuatu 7.9 +1.32% 99
Samoa Samoa 7.85 +2.78% 101
Kosovo Kosovo 9 -0.957% 58
Yemen Yemen 9.07 -0.504% 57
South Africa South Africa 8.31 -2.01% 88
Zambia Zambia 9.43 +0.28% 34
Zimbabwe Zimbabwe 9.96 +2.56% 11

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.2024.MA.5Y'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.2024.MA.5Y'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))