Population ages 15-64, female

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 37,287 -0.496% 188
Afghanistan Afghanistan 11,585,684 +3.37% 41
Angola Angola 10,173,997 +3.42% 47
Albania Albania 909,174 -1.84% 140
Andorra Andorra 28,623 +1.22% 195
United Arab Emirates United Arab Emirates 2,973,978 +4.39% 97
Argentina Argentina 14,937,048 +0.863% 31
Armenia Armenia 1,080,901 +1.74% 133
American Samoa American Samoa 14,890 -1.53% 206
Antigua & Barbuda Antigua & Barbuda 34,380 +0.146% 191
Australia Australia 8,772,791 +1.75% 54
Austria Austria 2,965,352 -0.0871% 98
Azerbaijan Azerbaijan 3,635,479 +0.277% 84
Burundi Burundi 3,747,263 +3.87% 81
Belgium Belgium 3,742,637 +0.534% 82
Benin Benin 3,998,199 +2.93% 77
Burkina Faso Burkina Faso 6,601,436 +3.28% 60
Bangladesh Bangladesh 58,960,050 +1.54% 8
Bulgaria Bulgaria 2,016,042 -0.265% 112
Bahrain Bahrain 428,244 +0.987% 156
Bahamas Bahamas 146,848 +0.671% 173
Bosnia & Herzegovina Bosnia & Herzegovina 1,024,823 -1.42% 137
Belarus Belarus 3,089,360 -0.973% 94
Belize Belize 141,620 +1.78% 174
Bermuda Bermuda 20,676 -1.1% 199
Bolivia Bolivia 3,989,315 +1.82% 78
Brazil Brazil 74,151,037 +0.183% 5
Barbados Barbados 96,172 -0.41% 179
Brunei Brunei 153,783 +0.622% 172
Bhutan Bhutan 262,839 +1.33% 164
Botswana Botswana 805,751 +1.91% 142
Central African Republic Central African Republic 1,411,436 +3.28% 127
Canada Canada 13,343,537 +2.6% 36
Switzerland Switzerland 2,901,135 +1.08% 99
Chile Chile 6,778,980 +0.476% 58
China China 472,394,210 +0.126% 2
Côte d’Ivoire Côte d’Ivoire 8,812,363 +3.2% 53
Cameroon Cameroon 8,171,208 +3.22% 55
Congo - Kinshasa Congo - Kinshasa 28,130,541 +3.4% 18
Congo - Brazzaville Congo - Brazzaville 1,794,640 +3.1% 115
Colombia Colombia 18,661,303 +0.917% 25
Comoros Comoros 251,200 +2.35% 165
Cape Verde Cape Verde 170,822 +1.28% 171
Costa Rica Costa Rica 1,779,049 +0.458% 116
Cuba Cuba 3,739,660 -0.622% 83
Curaçao Curaçao 53,953 -0.568% 184
Cayman Islands Cayman Islands 27,507 +1.42% 196
Cyprus Cyprus 461,255 +0.545% 154
Czechia Czechia 3,390,189 +0.102% 89
Germany Germany 25,841,921 -1.12% 19
Djibouti Djibouti 389,599 +1.82% 160
Dominica Dominica 22,710 -0.101% 198
Denmark Denmark 1,877,887 +0.315% 114
Dominican Republic Dominican Republic 3,748,516 +0.871% 80
Algeria Algeria 14,392,617 +1.61% 33
Ecuador Ecuador 6,089,686 +1.28% 65
Egypt Egypt 36,107,214 +2.21% 13
Eritrea Eritrea 1,037,142 +2.65% 136
Spain Spain 15,974,664 +0.666% 30
Estonia Estonia 427,192 -0.108% 157
Ethiopia Ethiopia 38,229,821 +3.05% 12
Finland Finland 1,697,396 +0.88% 121
Fiji Fiji 309,799 +0.782% 161
France France 21,185,796 +0.0803% 23
Faroe Islands Faroe Islands 16,124 +0.888% 204
Micronesia (Federated States of) Micronesia (Federated States of) 35,541 +0.566% 190
Gabon Gabon 733,985 +2.57% 145
United Kingdom United Kingdom 21,998,793 +0.939% 21
Georgia Georgia 1,218,996 -1.4% 129
Ghana Ghana 10,438,740 +2.4% 45
Gibraltar Gibraltar 12,677 +2.2% 209
Guinea Guinea 4,184,641 +2.87% 75
Gambia Gambia 788,707 +2.93% 143
Guinea-Bissau Guinea-Bissau 648,682 +2.81% 146
Equatorial Guinea Equatorial Guinea 508,239 +2.93% 152
Greece Greece 3,279,828 -0.436% 90
Grenada Grenada 39,432 +0.236% 187
Greenland Greenland 18,413 -0.808% 200
Guatemala Guatemala 5,923,101 +2.21% 67
Guam Guam 50,287 +0.115% 185
Guyana Guyana 274,817 +0.41% 162
Hong Kong SAR China Hong Kong SAR China 2,842,006 -1.27% 100
Honduras Honduras 3,491,646 +2.05% 87
Croatia Croatia 1,210,866 -0.145% 130
Haiti Haiti 3,808,956 +1.68% 79
Hungary Hungary 3,066,096 -0.569% 95
Indonesia Indonesia 95,412,234 +0.93% 4
Isle of Man Isle of Man 26,323 -0.246% 197
India India 477,104,306 +1.19% 1
Ireland Ireland 1,776,289 +1.5% 117
Iran Iran 31,165,410 +1.19% 16
Iraq Iraq 13,790,327 +2.88% 34
Iceland Iceland 129,886 +2.83% 176
Israel Israel 2,984,914 +1.31% 96
Italy Italy 18,627,185 -0.342% 27
Jamaica Jamaica 1,042,316 +0.0187% 135
Jordan Jordan 3,589,846 +1.74% 85
Japan Japan 35,908,297 -0.428% 14
Kazakhstan Kazakhstan 6,472,365 +0.886% 61
Kenya Kenya 17,106,066 +2.96% 29
Kyrgyzstan Kyrgyzstan 2,274,608 +1.79% 107
Cambodia Cambodia 5,760,017 +1.29% 69
Kiribati Kiribati 42,764 +1.64% 186
St. Kitts & Nevis St. Kitts & Nevis 17,228 -0.336% 201
South Korea South Korea 17,651,149 -0.774% 28
Kuwait Kuwait 1,419,199 +3.08% 126
Laos Laos 2,519,425 +1.73% 103
Lebanon Lebanon 1,911,432 +0.71% 113
Liberia Liberia 1,615,215 +2.9% 122
Libya Libya 2,443,047 +1.63% 104
St. Lucia St. Lucia 65,604 +0.286% 182
Liechtenstein Liechtenstein 13,069 -0.0612% 208
Sri Lanka Sri Lanka 7,392,361 -0.677% 57
Lesotho Lesotho 739,057 +1.66% 144
Lithuania Lithuania 936,532 +0.234% 138
Luxembourg Luxembourg 227,660 +1.23% 167
Latvia Latvia 593,354 -1.14% 148
Macao SAR China Macao SAR China 273,061 +0.597% 163
Saint Martin (French part) Saint Martin (French part) 8,483 -6.77% 213
Morocco Morocco 12,484,183 +1.11% 38
Monaco Monaco 9,826 -1.04% 212
Moldova Moldova 808,321 -3.46% 141
Madagascar Madagascar 9,158,335 +2.9% 51
Maldives Maldives 140,853 +1.11% 175
Mexico Mexico 45,671,216 +1.04% 10
Marshall Islands Marshall Islands 11,156 -3.39% 210
North Macedonia North Macedonia 588,893 -2.41% 150
Mali Mali 6,226,153 +3.7% 63
Malta Malta 177,686 +3.37% 170
Myanmar (Burma) Myanmar (Burma) 18,644,672 +0.68% 26
Montenegro Montenegro 203,047 -0.274% 169
Mongolia Mongolia 1,105,487 +1.47% 132
Northern Mariana Islands Northern Mariana Islands 14,199 -2.7% 207
Mozambique Mozambique 9,520,279 +3.33% 48
Mauritania Mauritania 1,452,828 +3.35% 125
Mauritius Mauritius 443,315 -0.344% 155
Malawi Malawi 6,351,367 +3.68% 62
Malaysia Malaysia 11,761,748 +1.64% 40
Namibia Namibia 917,853 +2.62% 139
New Caledonia New Caledonia 99,786 +0.747% 177
Niger Niger 6,737,936 +4.05% 59
Nigeria Nigeria 64,251,214 +2.89% 7
Nicaragua Nicaragua 2,310,790 +1.73% 106
Netherlands Netherlands 5,765,367 +0.334% 68
Norway Norway 1,772,144 +1.07% 118
Nepal Nepal 10,318,192 +0.528% 46
Nauru Nauru 3,460 +0.757% 215
New Zealand New Zealand 1,727,494 +1.46% 120
Oman Oman 1,283,163 +5.13% 128
Pakistan Pakistan 72,995,753 +2.2% 6
Panama Panama 1,478,283 +1.38% 124
Peru Peru 11,475,213 +1.31% 42
Philippines Philippines 38,534,762 +1.62% 11
Palau Palau 5,552 -0.269% 214
Papua New Guinea Papua New Guinea 3,255,057 +2.2% 92
Poland Poland 11,823,298 -0.855% 39
Puerto Rico Puerto Rico 1,060,535 -0.34% 134
North Korea North Korea 9,045,857 -0.22% 52
Portugal Portugal 3,433,664 +0.577% 88
Paraguay Paraguay 2,234,854 +1.27% 109
Palestinian Territories Palestinian Territories 1,564,355 +3.04% 123
French Polynesia French Polynesia 96,939 +0.336% 178
Qatar Qatar 591,575 +8.76% 149
Romania Romania 6,072,435 -0.132% 66
Russia Russia 48,567,448 -0.818% 9
Rwanda Rwanda 4,320,219 +2.51% 74
Saudi Arabia Saudi Arabia 9,343,496 +5.51% 49
Sudan Sudan 14,553,963 +0.967% 32
Senegal Senegal 5,351,900 +3.04% 70
Singapore Singapore 2,128,790 +1.39% 110
Solomon Islands Solomon Islands 238,603 +3.04% 166
Sierra Leone Sierra Leone 2,542,343 +2.83% 102
El Salvador El Salvador 2,247,398 +0.676% 108
San Marino San Marino 11,138 -0.018% 211
Somalia Somalia 4,850,092 +3.67% 73
Serbia Serbia 2,120,445 -1.07% 111
South Sudan South Sudan 3,562,524 +5.48% 86
São Tomé & Príncipe São Tomé & Príncipe 69,097 +2.89% 181
Suriname Suriname 208,072 +0.983% 168
Slovakia Slovakia 1,760,413 -0.646% 119
Slovenia Slovenia 646,328 -0.107% 147
Sweden Sweden 3,209,212 +0.375% 93
Eswatini Eswatini 394,631 +1.27% 159
Sint Maarten Sint Maarten 16,170 +1.2% 203
Seychelles Seychelles 37,037 +1.46% 189
Syria Syria 8,166,426 +6.22% 56
Turks & Caicos Islands Turks & Caicos Islands 16,564 +0.662% 202
Chad Chad 5,273,184 +6.39% 71
Togo Togo 2,701,740 +2.77% 101
Thailand Thailand 25,414,634 -0.473% 20
Tajikistan Tajikistan 3,260,833 +1.95% 91
Turkmenistan Turkmenistan 2,441,473 +1.49% 105
Timor-Leste Timor-Leste 423,230 +2.27% 158
Tonga Tonga 33,102 +0.215% 192
Trinidad & Tobago Trinidad & Tobago 476,450 -0.357% 153
Tunisia Tunisia 4,135,489 +0.659% 76
Turkey Turkey 28,914,621 +0.391% 17
Tuvalu Tuvalu 2,812 -3.3% 216
Tanzania Tanzania 18,885,483 +3.2% 24
Uganda Uganda 13,755,102 +3.42% 35
Ukraine Ukraine 12,981,331 +0.314% 37
Uruguay Uruguay 1,111,568 +0.137% 131
United States United States 107,503,334 +0.605% 3
Uzbekistan Uzbekistan 11,321,831 +1.32% 43
St. Vincent & Grenadines St. Vincent & Grenadines 32,617 -0.528% 194
Venezuela Venezuela 9,272,897 +0.784% 50
British Virgin Islands British Virgin Islands 15,877 +1.18% 205
U.S. Virgin Islands U.S. Virgin Islands 32,751 -1.09% 193
Vietnam Vietnam 34,610,177 +0.497% 15
Vanuatu Vanuatu 94,297 +2.6% 180
Samoa Samoa 60,656 +0.773% 183
Kosovo Kosovo 537,576 -9.07% 151
Yemen Yemen 11,306,057 +3.15% 44
South Africa South Africa 21,982,447 +1.21% 22
Zambia Zambia 6,097,250 +3.64% 64
Zimbabwe Zimbabwe 4,968,888 +2.4% 72

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.1564.FE.IN'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.1564.FE.IN'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))