Population ages 0-14, female

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 8,888 -1.72% 192
Afghanistan Afghanistan 8,939,418 +2.1% 22
Angola Angola 8,355,406 +2.55% 23
Albania Albania 219,080 -2.28% 145
Andorra Andorra 4,752 -1.82% 202
United Arab Emirates United Arab Emirates 867,552 +2.73% 104
Argentina Argentina 4,805,559 -2.28% 44
Armenia Armenia 280,672 +0.727% 140
American Samoa American Samoa 6,270 -3.45% 196
Antigua & Barbuda Antigua & Barbuda 8,223 -1.81% 194
Australia Australia 2,359,934 +1.03% 73
Austria Austria 634,435 -0.00063% 116
Azerbaijan Azerbaijan 1,054,130 -1.92% 97
Burundi Burundi 3,121,350 +1.09% 59
Belgium Belgium 928,631 -1.05% 102
Benin Benin 2,963,927 +1.8% 63
Burkina Faso Burkina Faso 4,846,455 +0.84% 43
Bangladesh Bangladesh 23,498,832 +0.0176% 9
Bulgaria Bulgaria 453,484 -0.508% 127
Bahrain Bahrain 145,827 -0.67% 157
Bahamas Bahamas 35,516 -1.83% 178
Bosnia & Herzegovina Bosnia & Herzegovina 199,120 -1.99% 149
Belarus Belarus 722,562 -2.73% 109
Belize Belize 54,117 -0.135% 170
Bermuda Bermuda 4,299 -1.69% 204
Bolivia Bolivia 1,816,709 +0.189% 79
Brazil Brazil 20,423,238 -0.964% 10
Barbados Barbados 23,947 -1.29% 182
Brunei Brunei 46,328 -0.0712% 174
Bhutan Bhutan 79,717 -1.77% 166
Botswana Botswana 402,040 +1.13% 133
Central African Republic Central African Republic 1,294,973 +3.08% 90
Canada Canada 3,046,254 +1.68% 61
Switzerland Switzerland 657,469 +1.28% 114
Chile Chile 1,644,951 -1.88% 82
China China 105,242,419 -3.47% 2
Côte d’Ivoire Côte d’Ivoire 6,455,337 +1.59% 30
Cameroon Cameroon 5,988,301 +1.83% 35
Congo - Kinshasa Congo - Kinshasa 25,092,701 +3.15% 8
Congo - Brazzaville Congo - Brazzaville 1,269,239 +1.31% 91
Colombia Colombia 5,250,064 -0.506% 41
Comoros Comoros 158,617 +1.21% 152
Cape Verde Cape Verde 65,237 -2.53% 167
Costa Rica Costa Rica 471,912 -2.28% 122
Cuba Cuba 812,171 -1.87% 106
Curaçao Curaçao 11,401 -2.16% 189
Cayman Islands Cayman Islands 5,964 +1.38% 197
Cyprus Cyprus 105,875 +1.13% 162
Czechia Czechia 817,443 -1.67% 105
Germany Germany 5,652,368 -0.491% 37
Djibouti Djibouti 168,460 -0.0255% 151
Dominica Dominica 5,895 -2.16% 198
Denmark Denmark 456,646 -0.553% 126
Dominican Republic Dominican Republic 1,489,350 -0.398% 85
Algeria Algeria 6,952,773 +0.393% 28
Ecuador Ecuador 2,171,034 -1.35% 75
Egypt Egypt 18,197,195 +0.365% 11
Eritrea Eritrea 667,489 +0.441% 112
Spain Spain 3,061,651 -1.57% 60
Estonia Estonia 104,265 -2.05% 163
Ethiopia Ethiopia 25,295,708 +1.81% 7
Finland Finland 403,020 -1.13% 132
Fiji Fiji 123,543 -0.812% 159
France France 5,522,271 -1.31% 39
Faroe Islands Faroe Islands 5,332 -0.336% 201
Micronesia (Federated States of) Micronesia (Federated States of) 17,466 -0.535% 186
Gabon Gabon 460,504 +1.66% 125
United Kingdom United Kingdom 5,796,234 -0.23% 36
Georgia Georgia 369,969 -2.31% 136
Ghana Ghana 6,089,325 +0.866% 34
Gibraltar Gibraltar 3,364 +1.33% 207
Guinea Guinea 2,973,861 +1.57% 62
Gambia Gambia 549,741 +1.09% 119
Guinea-Bissau Guinea-Bissau 421,521 +1.02% 130
Equatorial Guinea Equatorial Guinea 349,739 +1.84% 137
Greece Greece 666,909 -2.97% 113
Grenada Grenada 11,170 -1.91% 190
Greenland Greenland 5,751 +0.0174% 200
Guatemala Guatemala 2,862,513 -0.248% 65
Guam Guam 21,096 +0.558% 184
Guyana Guyana 119,373 +0.0126% 160
Hong Kong SAR China Hong Kong SAR China 387,879 -2.08% 135
Honduras Honduras 1,618,436 +0.474% 84
Croatia Croatia 261,159 -1.41% 141
Haiti Haiti 1,821,080 -0.0555% 78
Hungary Hungary 669,491 -0.934% 110
Indonesia Indonesia 33,944,415 -0.557% 5
Isle of Man Isle of Man 5,871 -1.95% 199
India India 171,137,305 -0.765% 1
Ireland Ireland 487,551 -1.1% 121
Iran Iran 9,989,107 -0.681% 20
Iraq Iraq 8,210,236 +0.742% 25
Iceland Iceland 34,923 +1.16% 179
Israel Israel 1,331,128 +0.498% 88
Italy Italy 3,408,576 -2.1% 56
Jamaica Jamaica 260,777 -2.29% 142
Jordan Jordan 1,736,837 -0.945% 80
Japan Japan 6,900,575 -2.21% 29
Kazakhstan Kazakhstan 2,959,059 +0.681% 64
Kenya Kenya 10,322,203 +0.295% 18
Kyrgyzstan Kyrgyzstan 1,136,785 +0.761% 94
Cambodia Cambodia 2,572,011 +0.182% 69
Kiribati Kiribati 22,986 +0.52% 183
St. Kitts & Nevis St. Kitts & Nevis 4,268 -0.882% 205
South Korea South Korea 2,662,685 -3.55% 66
Kuwait Kuwait 442,948 +0.419% 128
Laos Laos 1,149,927 +0.143% 93
Lebanon Lebanon 740,592 -1.41% 108
Liberia Liberia 1,095,482 +0.982% 95
Libya Libya 984,639 -0.959% 99
St. Lucia St. Lucia 15,542 -1.46% 187
Liechtenstein Liechtenstein 2,713 +0.593% 211
Sri Lanka Sri Lanka 2,367,805 -2.08% 72
Lesotho Lesotho 401,089 -0.0877% 134
Lithuania Lithuania 206,896 -0.648% 147
Luxembourg Luxembourg 52,281 +1.42% 171
Latvia Latvia 138,644 -2.66% 158
Macao SAR China Macao SAR China 46,506 -0.375% 173
Saint Martin (French part) Saint Martin (French part) 2,765 -4.23% 210
Morocco Morocco 4,759,789 -0.557% 45
Monaco Monaco 2,566 +1.34% 212
Moldova Moldova 230,434 -4.07% 144
Madagascar Madagascar 6,191,578 +1.64% 33
Maldives Maldives 48,469 -1.54% 172
Mexico Mexico 15,755,315 -0.795% 13
Marshall Islands Marshall Islands 6,276 -3.77% 195
North Macedonia North Macedonia 147,079 -3.48% 155
Mali Mali 5,585,440 +2.29% 38
Malta Malta 36,083 +2.89% 177
Myanmar (Burma) Myanmar (Burma) 6,445,423 -0.211% 31
Montenegro Montenegro 54,464 -1.11% 169
Mongolia Mongolia 551,319 -0.0584% 118
Northern Mariana Islands Northern Mariana Islands 4,589 -4.79% 203
Mozambique Mozambique 7,669,238 +2.31% 27
Mauritania Mauritania 1,090,117 +2.13% 96
Mauritius Mauritius 94,370 -2.41% 164
Malawi Malawi 4,407,058 +1.04% 48
Malaysia Malaysia 3,748,619 -0.983% 53
Namibia Namibia 562,511 +1.35% 117
New Caledonia New Caledonia 30,621 -0.173% 180
Niger Niger 6,195,073 +2.54% 32
Nigeria Nigeria 47,028,066 +0.92% 3
Nicaragua Nicaragua 979,522 -0.202% 100
Netherlands Netherlands 1,319,317 -0.287% 89
Norway Norway 438,999 -0.955% 129
Nepal Nepal 4,088,699 -1.01% 51
Nauru Nauru 2,191 -0.364% 213
New Zealand New Zealand 470,892 +0.394% 123
Oman Oman 640,278 +2.49% 115
Pakistan Pakistan 45,061,392 +0.611% 4
Panama Panama 547,738 -0.273% 120
Peru Peru 4,027,361 -0.52% 52
Philippines Philippines 15,808,352 -1.91% 12
Palau Palau 1,540 -2.04% 215
Papua New Guinea Papua New Guinea 1,704,048 +0.919% 81
Poland Poland 2,632,729 -2.31% 68
Puerto Rico Puerto Rico 181,243 -3.07% 150
North Korea North Korea 2,444,076 +0.11% 71
Portugal Portugal 668,755 +0.423% 111
Paraguay Paraguay 968,075 +0.555% 101
Palestinian Territories Palestinian Territories 986,788 +1.42% 98
French Polynesia French Polynesia 26,018 -3.01% 181
Qatar Qatar 210,228 +7.4% 146
Romania Romania 1,463,638 -0.987% 86
Russia Russia 12,063,428 -1.58% 15
Rwanda Rwanda 2,648,605 +1.1% 67
Saudi Arabia Saudi Arabia 4,120,199 +3.57% 50
Sudan Sudan 10,072,490 +0.377% 19
Senegal Senegal 3,401,329 +1.38% 57
Singapore Singapore 344,432 +1.31% 138
Solomon Islands Solomon Islands 146,596 +1.36% 156
Sierra Leone Sierra Leone 1,633,633 +0.963% 83
El Salvador El Salvador 764,795 -1.08% 107
San Marino San Marino 2,049 -3.21% 214
Somalia Somalia 4,363,955 +3.36% 49
Serbia Serbia 466,614 -0.993% 124
South Sudan South Sudan 2,298,063 +1.59% 74
São Tomé & Príncipe São Tomé & Príncipe 44,254 +0.712% 175
Suriname Suriname 79,912 -0.328% 165
Slovakia Slovakia 416,677 -0.987% 131
Slovenia Slovenia 152,201 -1.29% 153
Sweden Sweden 871,967 -1.21% 103
Eswatini Eswatini 206,077 -0.0422% 148
Sint Maarten Sint Maarten 3,029 -0.851% 208
Seychelles Seychelles 11,836 +0.271% 188
Syria Syria 3,512,903 +0.537% 55
Turks & Caicos Islands Turks & Caicos Islands 3,803 -0.86% 206
Chad Chad 4,612,204 +3.59% 46
Togo Togo 1,862,506 +1.34% 77
Thailand Thailand 5,128,980 -2.31% 42
Tajikistan Tajikistan 1,898,430 +1.07% 76
Turkmenistan Turkmenistan 1,154,892 +1.22% 92
Timor-Leste Timor-Leste 231,536 -0.618% 143
Tonga Tonga 17,813 -1.07% 185
Trinidad & Tobago Trinidad & Tobago 119,323 -1.41% 161
Tunisia Tunisia 1,433,107 -0.922% 87
Turkey Turkey 8,996,683 -1.61% 21
Tuvalu Tuvalu 1,504 -0.595% 216
Tanzania Tanzania 14,436,010 +2.43% 14
Uganda Uganda 10,801,625 +1.81% 17
Ukraine Ukraine 2,552,285 -2.34% 70
Uruguay Uruguay 301,891 -2.16% 139
United States United States 28,701,842 -0.543% 6
Uzbekistan Uzbekistan 5,449,447 +2.72% 40
St. Vincent & Grenadines St. Vincent & Grenadines 10,545 -2.29% 191
Venezuela Venezuela 3,529,345 -2.05% 54
British Virgin Islands British Virgin Islands 2,817 -3.06% 209
U.S. Virgin Islands U.S. Virgin Islands 8,261 -0.733% 193
Vietnam Vietnam 11,346,898 -1.18% 16
Vanuatu Vanuatu 60,864 +1.48% 168
Samoa Samoa 40,642 -0.16% 176
Kosovo Kosovo 151,353 -11.9% 154
Yemen Yemen 8,141,746 +2.78% 26
South Africa South Africa 8,244,140 +0.403% 24
Zambia Zambia 4,419,294 +1.63% 47
Zimbabwe Zimbabwe 3,376,670 +0.663% 58

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.0014.FE.IN'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.0014.FE.IN'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))