Number of deaths ages 10-14 years

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 2,545 -0.702% 37
Angola Angola 5,535 +0.508% 12
Albania Albania 32 0% 134
Andorra Andorra 0 156
United Arab Emirates United Arab Emirates 65 0% 118
Argentina Argentina 866 +4.46% 60
Armenia Armenia 43 +2.38% 127
Antigua & Barbuda Antigua & Barbuda 2 0% 154
Australia Australia 150 +0.671% 106
Austria Austria 38 0% 132
Azerbaijan Azerbaijan 261 +3.57% 92
Burundi Burundi 3,040 +1.06% 31
Belgium Belgium 53 -1.85% 123
Benin Benin 2,216 +0.682% 39
Burkina Faso Burkina Faso 1,767 -1.56% 47
Bangladesh Bangladesh 6,870 -4.06% 9
Bulgaria Bulgaria 63 0% 119
Bahrain Bahrain 19 +11.8% 143
Bahamas Bahamas 8 0% 150
Bosnia & Herzegovina Bosnia & Herzegovina 21 0% 141
Belarus Belarus 57 -1.72% 122
Belize Belize 10 0% 148
Bolivia Bolivia 440 -1.79% 76
Brazil Brazil 4,219 -0.542% 22
Barbados Barbados 3 -25% 153
Brunei Brunei 6 0% 151
Bhutan Bhutan 58 -3.33% 121
Botswana Botswana 145 -2.68% 107
Central African Republic Central African Republic 1,497 -85.2% 51
Canada Canada 246 +1.23% 94
Switzerland Switzerland 33 0% 133
Chile Chile 186 +1.64% 103
China China 15,647 -0.509% 5
Côte d’Ivoire Côte d’Ivoire 5,335 -0.28% 13
Cameroon Cameroon 5,155 -0.559% 16
Congo - Kinshasa Congo - Kinshasa 22,854 +1.28% 3
Congo - Brazzaville Congo - Brazzaville 483 +0.416% 72
Colombia Colombia 1,171 -0.847% 54
Comoros Comoros 39 -2.5% 131
Cape Verde Cape Verde 10 0% 148
Costa Rica Costa Rica 68 -1.45% 117
Cuba Cuba 145 +3.57% 107
Cyprus Cyprus 6 0% 151
Czechia Czechia 51 -1.92% 124
Germany Germany 328 +3.14% 80
Djibouti Djibouti 110 -3.51% 111
Dominica Dominica 1 0% 155
Denmark Denmark 22 0% 140
Dominican Republic Dominican Republic 309 -1.59% 83
Algeria Algeria 1,360 +3.9% 52
Ecuador Ecuador 621 +2.99% 67
Egypt Egypt 4,317 +1.43% 20
Eritrea Eritrea 274 -2.14% 88
Spain Spain 214 -0.465% 100
Estonia Estonia 9 -10% 149
Ethiopia Ethiopia 8,673 -3% 7
Finland Finland 26 0% 136
Fiji Fiji 48 0% 125
France France 322 0% 81
Micronesia (Federated States of) Micronesia (Federated States of) 5 0% 152
Gabon Gabon 345 +0.877% 78
United Kingdom United Kingdom 316 -1.56% 82
Georgia Georgia 48 -4% 125
Ghana Ghana 3,437 +0.409% 25
Guinea Guinea 2,070 -0.289% 41
Gambia Gambia 295 0% 85
Guinea-Bissau Guinea-Bissau 290 -0.344% 86
Equatorial Guinea Equatorial Guinea 256 0% 93
Greece Greece 40 -4.76% 130
Grenada Grenada 5 0% 152
Guatemala Guatemala 758 0% 63
Guyana Guyana 33 0% 133
Honduras Honduras 640 -1.99% 66
Croatia Croatia 24 -20% 138
Haiti Haiti 961 -2.34% 59
Hungary Hungary 47 -4.08% 126
Indonesia Indonesia 9,344 -1.53% 6
India India 53,106 -4.58% 1
Ireland Ireland 26 0% 136
Iran Iran 2,313 -0.259% 38
Iraq Iraq 2,721 +1.68% 34
Iceland Iceland 2 0% 154
Israel Israel 72 0% 116
Italy Italy 237 +3.49% 95
Jamaica Jamaica 74 -2.63% 115
Jordan Jordan 79 -10.2% 114
Japan Japan 446 0% 74
Kazakhstan Kazakhstan 514 +2.59% 70
Kenya Kenya 2,771 -4.35% 32
Kyrgyzstan Kyrgyzstan 232 +4.04% 96
Cambodia Cambodia 505 -3.63% 71
Kiribati Kiribati 13 0% 147
St. Kitts & Nevis St. Kitts & Nevis 1 0% 155
South Korea South Korea 208 +0.971% 102
Kuwait Kuwait 59 +3.51% 120
Laos Laos 577 -2.7% 69
Lebanon Lebanon 230 +6.48% 97
Liberia Liberia 1,027 -0.291% 58
Libya Libya 1,202 +533% 53
St. Lucia St. Lucia 3 0% 153
Sri Lanka Sri Lanka 268 -3.94% 90
Lesotho Lesotho 220 -0.901% 98
Lithuania Lithuania 18 0% 144
Luxembourg Luxembourg 2 0% 154
Latvia Latvia 10 0% 148
Morocco Morocco 801 +28.6% 62
Monaco Monaco 0 156
Moldova Moldova 53 +1.92% 123
Madagascar Madagascar 4,772 +1.42% 18
Maldives Maldives 8 0% 150
Mexico Mexico 3,373 -4.64% 26
Marshall Islands Marshall Islands 3 0% 153
North Macedonia North Macedonia 15 0% 145
Mali Mali 5,156 +1.12% 15
Malta Malta 2 0% 154
Myanmar (Burma) Myanmar (Burma) 1,650 -3.17% 49
Montenegro Montenegro 5 0% 152
Mongolia Mongolia 134 +1.52% 109
Mozambique Mozambique 3,131 -0.54% 29
Mauritania Mauritania 340 0% 79
Mauritius Mauritius 14 -6.67% 146
Malawi Malawi 2,659 -1.23% 36
Malaysia Malaysia 442 -8.49% 75
Namibia Namibia 209 -3.69% 101
Niger Niger 8,593 +1.36% 8
Nigeria Nigeria 37,896 -0.36% 2
Nicaragua Nicaragua 261 -1.88% 92
Netherlands Netherlands 86 0% 113
Norway Norway 26 0% 136
Nepal Nepal 1,148 -3.53% 55
Nauru Nauru 0 156
New Zealand New Zealand 42 0% 128
Oman Oman 89 +5.95% 112
Pakistan Pakistan 20,008 -0.601% 4
Panama Panama 135 +0.746% 108
Peru Peru 831 -2% 61
Philippines Philippines 5,302 +0.665% 14
Palau Palau 0 156
Papua New Guinea Papua New Guinea 747 -0.928% 64
Poland Poland 278 +6.11% 87
North Korea North Korea 603 +0.836% 68
Portugal Portugal 47 0% 126
Paraguay Paraguay 166 0% 105
Palestinian Territories Palestinian Territories 1,801 +746% 45
Qatar Qatar 19 0% 143
Romania Romania 170 -7.61% 104
Russia Russia 1,697 -0.76% 48
Rwanda Rwanda 650 -13.8% 65
Saudi Arabia Saudi Arabia 373 -0.798% 77
Sudan Sudan 3,241 -2.2% 28
Senegal Senegal 1,886 -0.527% 43
Singapore Singapore 23 0% 139
Solomon Islands Solomon Islands 38 0% 132
Sierra Leone Sierra Leone 1,892 -0.106% 42
El Salvador El Salvador 273 -0.365% 89
San Marino San Marino 0 156
Somalia Somalia 4,000 -36.7% 23
Serbia Serbia 48 +2.13% 125
South Sudan South Sudan 2,750 +3.19% 33
São Tomé & Príncipe São Tomé & Príncipe 10 0% 148
Suriname Suriname 20 0% 142
Slovakia Slovakia 39 0% 131
Slovenia Slovenia 8 -11.1% 150
Sweden Sweden 51 0% 124
Eswatini Eswatini 214 -0.465% 100
Seychelles Seychelles 2 0% 154
Syria Syria 1,791 +44.7% 46
Turks & Caicos Islands Turks & Caicos Islands 0 156
Chad Chad 4,980 +1.36% 17
Togo Togo 1,067 -0.466% 56
Thailand Thailand 2,104 +1.59% 40
Tajikistan Tajikistan 217 +0.463% 99
Turkmenistan Turkmenistan 267 +3.89% 91
Timor-Leste Timor-Leste 119 -2.46% 110
Tonga Tonga 2 0% 154
Trinidad & Tobago Trinidad & Tobago 25 -3.85% 137
Tunisia Tunisia 303 +1.34% 84
Turkey Turkey 4,242 +201% 21
Tuvalu Tuvalu 0 156
Tanzania Tanzania 6,074 +0.281% 11
Uganda Uganda 6,312 -0.363% 10
Ukraine Ukraine 478 -34.3% 73
Uruguay Uruguay 41 0% 129
United States United States 3,662 +0.687% 24
Uzbekistan Uzbekistan 1,550 +15.5% 50
St. Vincent & Grenadines St. Vincent & Grenadines 5 0% 152
Venezuela Venezuela 1,054 -0.284% 57
British Virgin Islands British Virgin Islands 0 156
Vietnam Vietnam 2,670 +2.22% 35
Vanuatu Vanuatu 13 0% 147
Samoa Samoa 5 0% 152
Kosovo Kosovo 29 -6.45% 135
Yemen Yemen 4,756 +0.87% 19
South Africa South Africa 3,359 +0.0894% 27
Zambia Zambia 1,882 -0.529% 44
Zimbabwe Zimbabwe 3,063 +1.22% 30

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SH.DTH.1014'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SH.DTH.1014'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))