GNI, PPP (current international US$)

Source: worldbank.org, 01.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Angola Angola 290,359,718,936 +8.49% 65
Albania Albania 63,275,895,943 +9.79% 113
Andorra Andorra 6,404,935,596 +6.69% 161
United Arab Emirates United Arab Emirates 849,598,274,773 +5.69% 34
Argentina Argentina 1,351,107,952,721 +0.708% 28
Armenia Armenia 66,712,863,454 +7.42% 108
Antigua & Barbuda Antigua & Barbuda 3,005,932,903 +6.89% 168
Australia Australia 1,871,745,594,183 +4.07% 18
Austria Austria 659,538,291,661 +2.44% 41
Azerbaijan Azerbaijan 246,559,083,822 +7.23% 73
Burundi Burundi 13,406,127,630 +5.75% 149
Belgium Belgium 871,260,227,045 +5.57% 33
Benin Benin 63,531,653,157 +10.2% 112
Burkina Faso Burkina Faso 65,241,647,601 +7.29% 110
Bangladesh Bangladesh 1,746,416,616,550 +7.07% 20
Bulgaria Bulgaria 252,144,739,525 +9.66% 71
Bahrain Bahrain 101,060,228,220 +5.83% 96
Bosnia & Herzegovina Bosnia & Herzegovina 69,303,776,269 -2.77% 107
Belarus Belarus 294,283,361,659 +7.47% 64
Belize Belize 6,062,140,168 +10.7% 163
Bermuda Bermuda 8,040,864,841 +6.44% 157
Bolivia Bolivia 135,092,151,345 +3.91% 88
Brazil Brazil 4,589,247,204,333 +6.01% 7
Barbados Barbados 6,141,299,574 +6.17% 162
Brunei Brunei 42,969,581,015 +8.71% 132
Botswana Botswana 51,868,022,481 -0.619% 122
Central African Republic Central African Republic 7,141,160,821 +4.1% 158
Canada Canada 2,661,806,486,386 +4.86% 15
Switzerland Switzerland 820,508,693,381 +5.21% 35
Chile Chile 649,357,101,015 +5.24% 43
China China 37,923,660,945,962 +7.65% 1
Côte d’Ivoire Côte d’Ivoire 234,597,161,892 +8.31% 74
Cameroon Cameroon 159,923,467,447 +6.36% 82
Congo - Kinshasa Congo - Kinshasa 180,618,080,973 +9.03% 78
Congo - Brazzaville Congo - Brazzaville 42,421,079,374 +5.49% 133
Colombia Colombia 1,113,724,131,363 +4.32% 30
Comoros Comoros 3,532,060,379 +5.88% 167
Cape Verde Cape Verde 5,800,203,102 +9.09% 164
Costa Rica Costa Rica 142,999,478,288 +7.23% 86
Cyprus Cyprus 51,380,542,462 +7.13% 124
Czechia Czechia 591,343,376,161 +3.77% 45
Germany Germany 6,253,455,251,772 +4.83% 6
Djibouti Djibouti 9,171,634,463 +6.71% 155
Dominica Dominica 1,415,655,621 +4.99% 175
Denmark Denmark 491,536,148,074 +8.99% 51
Dominican Republic Dominican Republic 297,703,331,518 +6.48% 63
Algeria Algeria 806,012,545,002 +5.3% 36
Ecuador Ecuador 279,582,846,402 +0.00694% 67
Egypt Egypt 2,124,895,716,381 +4.73% 17
Spain Spain 2,764,155,507,335 +7.93% 14
Estonia Estonia 66,212,919,230 +6.61% 109
Ethiopia Ethiopia 432,271,294,351 +10% 55
Finland Finland 362,714,153,093 +4.93% 58
Fiji Fiji 13,817,411,000 +4.67% 148
France France 4,290,416,977,716 +5.76% 9
Micronesia (Federated States of) Micronesia (Federated States of) 530,731,716 +1.22% 178
Gabon Gabon 49,621,190,718 +4.83% 126
United Kingdom United Kingdom 4,159,627,545,593 +5.35% 10
Georgia Georgia 97,618,881,753 +13.6% 97
Ghana Ghana 266,080,712,490 +11.3% 69
Guinea Guinea 61,946,506,781 +8.59% 114
Gambia Gambia 9,387,504,747 +7.91% 154
Guinea-Bissau Guinea-Bissau 6,769,765,675 +7.52% 160
Equatorial Guinea Equatorial Guinea 23,326,855,243 +3.05% 146
Greece Greece 447,717,035,170 +7.85% 52
Grenada Grenada 2,137,969,715 +7.31% 170
Guatemala Guatemala 260,757,017,565 +6.64% 70
Guyana Guyana 43,479,936,166 +20.6% 130
Hong Kong SAR China Hong Kong SAR China 619,514,603,395 +5.99% 44
Honduras Honduras 74,699,976,294 +5.76% 104
Croatia Croatia 188,536,531,523 +7.5% 77
Haiti Haiti 37,482,831,981 -1.86% 135
Hungary Hungary 443,651,201,560 +5.17% 53
Indonesia Indonesia 4,539,793,544,177 +7.57% 8
India India 15,956,884,099,185 +8.97% 3
Ireland Ireland 535,148,733,608 +6% 49
Iran Iran 1,686,278,163,166 +5.64% 22
Iraq Iraq 669,998,738,398 +1.08% 40
Iceland Iceland 31,591,804,944 +2.88% 140
Israel Israel 551,128,538,349 +5.39% 48
Italy Italy 3,566,182,371,866 +4.97% 12
Jamaica Jamaica 32,403,822,795 +1.01% 139
Jordan Jordan 122,099,748,750 +3.28% 90
Japan Japan 6,833,130,457,959 +3.81% 4
Kazakhstan Kazakhstan 779,859,710,823 +10.9% 38
Kenya Kenya 367,725,357,592 +7.23% 57
Kyrgyzstan Kyrgyzstan 55,890,755,086 +9.26% 119
Cambodia Cambodia 137,972,007,501 +9.02% 87
Kiribati Kiribati 805,480,160 +5.8% 177
St. Kitts & Nevis St. Kitts & Nevis 1,645,669,768 +4.11% 173
Kuwait Kuwait 310,686,463,575 +1.01% 62
Laos Laos 71,224,387,422 +7.89% 106
Liberia Liberia 9,864,709,399 +6.71% 153
Libya Libya 103,668,388,781 +1.98% 95
St. Lucia St. Lucia 4,522,261,470 +5.78% 165
Sri Lanka Sri Lanka 334,070,435,216 +8.16% 60
Lesotho Lesotho 8,371,694,410 +3.35% 156
Lithuania Lithuania 153,269,785,078 +8.14% 84
Luxembourg Luxembourg 72,504,752,795 +10.1% 105
Latvia Latvia 80,324,450,999 +5.62% 100
Morocco Morocco 392,363,498,362 +5.61% 56
Moldova Moldova 45,106,956,753 +1.79% 129
Madagascar Madagascar 58,643,990,027 +6.26% 117
Maldives Maldives 12,473,177,301 +8.31% 152
Mexico Mexico 3,261,486,565,561 +3.72% 13
Marshall Islands Marshall Islands 364,965,719 +4.45% 179
North Macedonia North Macedonia 45,173,250,570 +6.78% 128
Mali Mali 78,646,233,001 +8.51% 102
Malta Malta 33,232,383,397 +10.2% 138
Myanmar (Burma) Myanmar (Burma) 322,772,192,359 +2.06% 61
Montenegro Montenegro 20,763,791,466 +7.79% 147
Mongolia Mongolia 59,662,783,508 +6.92% 115
Mozambique Mozambique 52,256,324,122 +1.5% 121
Mauritania Mauritania 37,224,325,107 +6.61% 136
Mauritius Mauritius 43,245,522,744 +8.3% 131
Malawi Malawi 38,846,195,258 +3.57% 134
Malaysia Malaysia 1,333,262,759,365 +7.34% 29
Namibia Namibia 34,231,526,656 +7.84% 137
Niger Niger 53,795,015,323 +11% 120
Nigeria Nigeria 1,445,485,774,367 +5.35% 27
Nicaragua Nicaragua 57,206,867,208 +5.54% 118
Netherlands Netherlands 1,494,256,645,602 +7.64% 26
Norway Norway 589,406,709,799 +1.11% 46
Nepal Nepal 172,888,543,484 +6.67% 81
Nauru Nauru 277,252,192 -1.56% 180
New Zealand New Zealand 283,799,109,066 +4.06% 66
Oman Oman 205,147,645,243 +2.11% 75
Pakistan Pakistan 1,541,674,143,507 +4.98% 25
Panama Panama 177,424,126,796 +5.06% 79
Peru Peru 573,921,124,324 +5.31% 47
Philippines Philippines 1,544,302,453,097 +10.3% 24
Papua New Guinea Papua New Guinea 48,764,692,272 +8.64% 127
Poland Poland 1,779,534,261,291 +7.85% 19
Puerto Rico Puerto Rico 109,321,156,915 +3.94% 93
Portugal Portugal 531,732,745,161 +8.88% 50
Paraguay Paraguay 124,039,628,367 +7.12% 89
Palestinian Territories Palestinian Territories 28,070,532,596 -24.3% 145
Qatar Qatar 348,466,207,787 +4.76% 59
Romania Romania 904,272,578,859 +6.29% 32
Russia Russia 6,830,553,630,733 +6.85% 5
Rwanda Rwanda 51,601,722,849 +10.9% 123
Saudi Arabia Saudi Arabia 2,527,445,467,251 +4.13% 16
Sudan Sudan 104,304,530,895 -11.8% 94
Senegal Senegal 91,680,222,344 +9.85% 98
Singapore Singapore 761,799,474,410 +9.71% 39
Solomon Islands Solomon Islands 2,355,345,543 +3.55% 169
Sierra Leone Sierra Leone 30,127,902,261 +6.52% 143
El Salvador El Salvador 78,706,381,868 +5.01% 101
Somalia Somalia 30,311,044,608 +6.48% 142
Serbia Serbia 196,783,795,898 +9.05% 76
São Tomé & Príncipe São Tomé & Príncipe 1,465,929,596 +2.23% 174
Suriname Suriname 12,912,276,774 +7.08% 151
Slovakia Slovakia 250,036,174,015 +7.07% 72
Slovenia Slovenia 118,804,822,227 +4.83% 91
Sweden Sweden 783,735,815,262 +6.05% 37
Eswatini Eswatini 13,361,135,543 +2.79% 150
Seychelles Seychelles 3,905,342,842 +5.46% 166
Chad Chad 59,508,941,819 +6.14% 116
Togo Togo 30,890,949,066 +7.85% 141
Thailand Thailand 1,721,263,615,425 +4.69% 21
Tajikistan Tajikistan 75,208,121,282 +16.9% 103
Turkmenistan Turkmenistan 151,542,997,033 +4.64% 85
Timor-Leste Timor-Leste 6,840,253,359 -12.2% 159
Trinidad & Tobago Trinidad & Tobago 49,645,102,236 +2.82% 125
Tunisia Tunisia 172,975,534,990 +3.8% 80
Turkey Turkey 3,712,212,778,179 +3.85% 11
Tanzania Tanzania 273,406,302,567 +7.42% 68
Uganda Uganda 159,895,429,955 +8.83% 83
Ukraine Ukraine 657,663,611,816 +2.71% 42
Uruguay Uruguay 115,356,072,132 +6.27% 92
United States United States 29,243,108,000,000 +5.11% 2
Uzbekistan Uzbekistan 436,189,705,029 +9.1% 54
St. Vincent & Grenadines St. Vincent & Grenadines 2,121,466,761 +5.42% 171
Vietnam Vietnam 1,600,224,759,763 +11.9% 23
Vanuatu Vanuatu 1,349,814,511 +7.02% 176
Samoa Samoa 1,682,208,217 +12% 172
Kosovo Kosovo 29,040,768,725 +7% 144
South Africa South Africa 969,842,759,711 +2.37% 31
Zambia Zambia 84,203,284,700 +4.61% 99
Zimbabwe Zimbabwe 64,483,497,017 +4.59% 111

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'NY.GNP.MKTP.PP.CD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'NY.GNP.MKTP.PP.CD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))