Fixed broadband subscriptions (per 100 people)

Source: worldbank.org, 01.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 0.0801 +0.574% 150
Angola Angola 0.374 -3.37% 144
Albania Albania 22.5 +8.73% 69
Andorra Andorra 51.7 +1.04% 2
United Arab Emirates United Arab Emirates 37.1 +0.674% 28
Argentina Argentina 25.4 +2.73% 63
Armenia Armenia 18.5 +4.6% 77
Australia Australia 36.6 +0.581% 31
Austria Austria 29.4 +0.473% 50
Azerbaijan Azerbaijan 20.9 +2.54% 72
Burundi Burundi 0.0203 -32.3% 155
Belgium Belgium 43.7 +0.314% 14
Benin Benin 0.171 +11.6% 146
Bangladesh Bangladesh 7.89 +10.1% 102
Bulgaria Bulgaria 37 +5.88% 29
Bahrain Bahrain 17.2 -4.69% 81
Bahamas Bahamas 23.8 +12.7% 64
Bosnia & Herzegovina Bosnia & Herzegovina 28.5 +4.35% 53
Belarus Belarus 35.1 +3.01% 35
Brazil Brazil 22.4 +7% 71
Brunei Brunei 20.2 +2.06% 73
Bhutan Bhutan 1.32 +109% 132
Botswana Botswana 3.41 -24.8% 117
Canada Canada 42.5 +0.818% 17
Switzerland Switzerland 47.7 +2.19% 5
Chile Chile 23 +0.9% 66
China China 44.7 +8.11% 9
Côte d’Ivoire Côte d’Ivoire 1.36 +8.91% 130
Congo - Kinshasa Congo - Kinshasa 0.022 -31.8% 154
Congo - Brazzaville Congo - Brazzaville 1.27 +191% 133
Colombia Colombia 17 +0.173% 82
Comoros Comoros 0.388 +76.8% 142
Cape Verde Cape Verde 7.23 +10.1% 104
Costa Rica Costa Rica 22.5 +3.52% 68
Cuba Cuba 2.97 +2.74% 119
Curaçao Curaçao 31.5 -4.25% 43
Cyprus Cyprus 38.7 +2.2% 21
Czechia Czechia 37.9 +0.521% 24
Germany Germany 45.4 +1.71% 8
Djibouti Djibouti 1.47 +4.22% 129
Denmark Denmark 44 -1.9% 12
Dominican Republic Dominican Republic 11.1 +4.31% 95
Algeria Algeria 12 +16% 92
Ecuador Ecuador 16.1 +6.32% 83
Egypt Egypt 10.9 +1.7% 97
Spain Spain 37.2 +4% 27
Estonia Estonia 35.3 -11.2% 34
Finland Finland 35.3 +3.02% 33
France France 48.7 +0.868% 4
Gabon Gabon 3.97 +20.2% 114
United Kingdom United Kingdom 41.4 +0.364% 18
Georgia Georgia 29.3 +3.44% 51
Ghana Ghana 0.555 -11.1% 140
Guinea-Bissau Guinea-Bissau 0.31 +41.6% 145
Greece Greece 43.9 +2.17% 13
Guatemala Guatemala 5.08 +1.12% 111
Hong Kong SAR China Hong Kong SAR China 39.9 -0.17% 20
Honduras Honduras 4.36 -1.08% 113
Croatia Croatia 28.5 +2.93% 54
Hungary Hungary 36.8 +0.702% 30
Indonesia Indonesia 4.82 -0.101% 112
India India 2.75 +16.7% 122
Ireland Ireland 31.9 +1.13% 40
Iran Iran 12 -1.55% 91
Iraq Iraq 17.2 +18.9% 80
Iceland Iceland 37.4 +0.00882% 26
Israel Israel 29.4 +0.919% 49
Italy Italy 31.8 +2.08% 42
Jamaica Jamaica 15.8 +5.51% 84
Jordan Jordan 7.04 -0.511% 105
Japan Japan 38.6 +4.86% 22
Kazakhstan Kazakhstan 14.3 -0.886% 87
Kenya Kenya 2.39 +61.8% 126
Kyrgyzstan Kyrgyzstan 6.45 +15% 109
Cambodia Cambodia 3.64 +22.9% 115
Kiribati Kiribati 0.04 -42% 153
South Korea South Korea 46.6 +2.45% 6
Kuwait Kuwait 1.01 -25.6% 136
Laos Laos 2.72 +14.2% 123
Liechtenstein Liechtenstein 49.4 +0.973% 3
Sri Lanka Sri Lanka 8.77 -9.04% 100
Lesotho Lesotho 0.384 -3.47% 143
Lithuania Lithuania 28 -1.67% 55
Latvia Latvia 26 +0.0215% 61
Macao SAR China Macao SAR China 29.7 +0.234% 48
Morocco Morocco 7.02 +8.5% 106
Monaco Monaco 55.9 +1.19% 1
Moldova Moldova 27.4 +4.19% 57
Madagascar Madagascar 0.124 +15.8% 147
Maldives Maldives 18.7 +7.63% 76
Mexico Mexico 20.1 -0.976% 74
North Macedonia North Macedonia 29.2 +4.19% 52
Malta Malta 44.3 +1.93% 10
Myanmar (Burma) Myanmar (Burma) 2.8 +33.4% 120
Montenegro Montenegro 32 +0.387% 39
Mongolia Mongolia 14.6 +12.8% 86
Mauritania Mauritania 0.59 +42.2% 139
Mauritius Mauritius 26.9 +2.72% 58
Malawi Malawi 0.0796 +9.88% 151
Malaysia Malaysia 13 +7.01% 89
Namibia Namibia 3.52 +6.93% 116
Niger Niger 0.108 +113% 148
Nigeria Nigeria 0.0513 +18.2% 152
Nicaragua Nicaragua 5.43 +8.44% 110
Netherlands Netherlands 43.3 -0.688% 16
Norway Norway 45.4 -0.497% 7
New Zealand New Zealand 37.9 +4.27% 25
Oman Oman 10.9 -0.0368% 96
Pakistan Pakistan 1.36 +5.65% 131
Panama Panama 18.1 +10.7% 78
Peru Peru 10.4 +10.4% 99
Philippines Philippines 6.54 -14.4% 108
Palau Palau 7.33 +4.86% 103
Poland Poland 26.1 +9.55% 60
Puerto Rico Puerto Rico 23.2 +3.94% 65
Portugal Portugal 44.1 +2.73% 11
Paraguay Paraguay 12.9 +15.5% 90
Palestinian Territories Palestinian Territories 8.37 +5.47% 101
French Polynesia French Polynesia 35.6 +27.4% 32
Qatar Qatar 11.6 -7.91% 93
Romania Romania 34.7 +4.39% 36
Russia Russia 25.8 +4.83% 62
Rwanda Rwanda 0.446 +27.3% 141
Saudi Arabia Saudi Arabia 43.6 +4.18% 15
Senegal Senegal 1.97 +40.6% 127
Singapore Singapore 27.4 -0.423% 56
El Salvador El Salvador 11.6 +4.28% 94
Somalia Somalia 0.723 +8.15% 137
Serbia Serbia 31.3 +6.56% 44
South Sudan South Sudan 0.00174 -4.02% 157
São Tomé & Príncipe São Tomé & Príncipe 2.5 +23.5% 124
Suriname Suriname 17.5 -12.4% 79
Slovakia Slovakia 33.2 -2.43% 37
Slovenia Slovenia 31.9 -0.403% 41
Sweden Sweden 40.7 +0.307% 19
Eswatini Eswatini 2.76 +26.5% 121
Seychelles Seychelles 30.8 +3.15% 45
Syria Syria 6.86 -4.21% 107
Chad Chad 0 158
Togo Togo 1.23 +18.4% 135
Thailand Thailand 15.7 -10.1% 85
Timor-Leste Timor-Leste 0.00578 -42.2% 156
Trinidad & Tobago Trinidad & Tobago 26.9 +3.31% 59
Tunisia Tunisia 14.1 +1.53% 88
Turkey Turkey 22.5 +2.92% 70
Tanzania Tanzania 2.5 +13.2% 125
Uganda Uganda 0.0913 +7.3% 149
Ukraine Ukraine 19.7 +12.2% 75
Uruguay Uruguay 32.4 -3.24% 38
United States United States 38.1 +1.76% 23
Uzbekistan Uzbekistan 30.3 +17.3% 47
St. Vincent & Grenadines St. Vincent & Grenadines 30.5 +5.16% 46
Venezuela Venezuela 10.6 +11% 98
Vietnam Vietnam 22.7 +6.14% 67
Vanuatu Vanuatu 1.23 +9.51% 134
South Africa South Africa 3.41 +9.05% 118
Zambia Zambia 0.681 +58.9% 138
Zimbabwe Zimbabwe 1.57 -2.89% 128

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'IT.NET.BBND.P2'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'IT.NET.BBND.P2'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))