Claims on central government, etc. (% GDP)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Angola Angola 8.74 -17.9% 68
Albania Albania 21.4 -1.76% 29
United Arab Emirates United Arab Emirates -6.09 +9.3% 115
Argentina Argentina 23.6 -62.3% 23
Armenia Armenia 14.2 +11.6% 46
Antigua & Barbuda Antigua & Barbuda 6.64 -30.5% 80
Australia Australia 8.69 -5.53% 71
Austria Austria 18.1 -4.24% 39
Azerbaijan Azerbaijan -6.48 +85.6% 116
Belgium Belgium 21.4 -6.74% 30
Benin Benin 1.3 -986% 100
Burkina Faso Burkina Faso 4.58 +25.6% 89
Bangladesh Bangladesh 14.8 -3.54% 44
Bulgaria Bulgaria 3.93 +105% 93
Bosnia & Herzegovina Bosnia & Herzegovina 2.65 +78.2% 97
Belize Belize 12.8 -6.6% 53
Bolivia Bolivia 29.2 +25.8% 17
Brazil Brazil 51.1 +0.589% 5
Brunei Brunei 26.1 +11.4% 20
Bhutan Bhutan 8.35 -23.8% 72
Botswana Botswana 12.9 +75.9% 52
Chile Chile 22.3 +12.4% 25
China China 46 +13.8% 8
Côte d’Ivoire Côte d’Ivoire 13.6 +4.78% 49
Colombia Colombia 6.1 +9.14% 83
Costa Rica Costa Rica 22.9 -2.08% 24
Cyprus Cyprus 12 -14.7% 58
Czechia Czechia 11.9 +24.5% 59
Djibouti Djibouti 7.57 +60.1% 75
Dominica Dominica 10.4 +52.3% 66
Denmark Denmark -5.72 +35.7% 114
Dominican Republic Dominican Republic 25.7 +11.2% 21
Algeria Algeria 36.9 +15.6% 12
Ecuador Ecuador 4.31 -12.2% 91
Egypt Egypt 55.7 -5.63% 3
Spain Spain 37.2 -4.96% 11
Estonia Estonia -2.87 +7.57% 109
Finland Finland 12.9 -7.5% 51
Fiji Fiji 41.3 -7.33% 9
France France 29 -0.66% 18
United Kingdom United Kingdom 22.2 -12.1% 26
Georgia Georgia 4.94 +55.8% 88
Guinea-Bissau Guinea-Bissau 13.4 +19.1% 50
Greece Greece 19.8 -3.97% 33
Grenada Grenada -24.6 +41% 127
Guatemala Guatemala 6.75 -13.2% 79
Guyana Guyana 12.3 -8.5% 56
Hong Kong SAR China Hong Kong SAR China -21.1 -24.9% 124
Honduras Honduras 3.69 -22.6% 94
Croatia Croatia 8.74 -10.3% 69
Haiti Haiti 9.38 -17.4% 67
Hungary Hungary 17.1 +9.68% 42
Indonesia Indonesia 11.7 -5.28% 62
Ireland Ireland 8.3 -3.02% 73
Iraq Iraq 7.05 +165% 78
Iceland Iceland -2.66 -12.7% 108
Italy Italy 51.1 -4.94% 6
Jamaica Jamaica 10.5 -7.61% 65
Jordan Jordan 29.7 -1.12% 16
Japan Japan 138 -4.79% 1
Kazakhstan Kazakhstan 12.2 +9.58% 57
Kyrgyzstan Kyrgyzstan -2.1 -38.6% 106
Cambodia Cambodia -12.7 +2.87% 119
St. Kitts & Nevis St. Kitts & Nevis -26.2 -29.3% 128
Kuwait Kuwait -21.9 +0.341% 125
Libya Libya -8.53 +142% 117
St. Lucia St. Lucia -11.9 +29.5% 118
Lesotho Lesotho -19.1 +78.8% 122
Lithuania Lithuania 3.97 -18.4% 92
Luxembourg Luxembourg -2.4 +66.3% 107
Latvia Latvia 3.57 -47.1% 95
Macao SAR China Macao SAR China -72.2 +0.854% 130
Morocco Morocco 22.1 -51.4% 27
Moldova Moldova 2.16 -16.1% 98
Madagascar Madagascar 5.79 +19.7% 84
Maldives Maldives 57.9 +1.59% 2
Mexico Mexico 25.4 +14.7% 22
North Macedonia North Macedonia 19.4 +5.15% 35
Mali Mali 11.3 -7.24% 63
Malta Malta 14.3 +6.98% 45
Montenegro Montenegro 0.656 -90.3% 102
Mozambique Mozambique 18.5 +39.6% 36
Mauritius Mauritius 31.6 -6.77% 14
Malaysia Malaysia 18.5 -1.62% 37
Namibia Namibia 11.8 -5.12% 60
Niger Niger 5.54 +8.72% 86
Nicaragua Nicaragua -3.29 +54.9% 110
Netherlands Netherlands 11.8 -14.2% 61
Norway Norway -15.6 +4.98% 121
Nepal Nepal 21.7 +2.43% 28
New Zealand New Zealand 7.4 -44.8% 77
Pakistan Pakistan 33.5 -5.18% 13
Philippines Philippines 30.2 -1.2% 15
Poland Poland 12.6 +3.76% 54
Portugal Portugal 28.7 -9.3% 19
Paraguay Paraguay -5.37 -4.13% 112
Palestinian Territories Palestinian Territories 17.7 +55.9% 41
Romania Romania 6.34 +25.4% 82
Rwanda Rwanda -1.91 -650% 105
Senegal Senegal 18.4 -0.0284% 38
Solomon Islands Solomon Islands 0.735 +1,143% 101
Sierra Leone Sierra Leone 15.4 +7.05% 43
El Salvador El Salvador 47.5 +0.982% 7
Somalia Somalia -0.00003 +6.8% 103
Serbia Serbia -0.281 -55.8% 104
Suriname Suriname -3.93 +9.19% 111
Slovakia Slovakia 20.9 -7.61% 31
Slovenia Slovenia 13.9 -5.98% 48
Sweden Sweden 5.03 -15.5% 87
Eswatini Eswatini 1.92 -36.9% 99
Seychelles Seychelles 11.3 -28.7% 64
Togo Togo 7.52 +92.5% 76
Thailand Thailand 40.9 +12.9% 10
Timor-Leste Timor-Leste -39.6 -2.7% 129
Tonga Tonga -23.7 -3.67% 126
Trinidad & Tobago Trinidad & Tobago 8.28 -16.7% 74
Tunisia Tunisia 20.2 +20.6% 32
Turkey Turkey 14.2 -5.71% 47
Tanzania Tanzania 5.6 -7.18% 85
Uganda Uganda 19.6 +12.3% 34
Ukraine Ukraine 17.8 -11.6% 40
Uruguay Uruguay 6.58 -77.4% 81
United States United States 52.1 +4.48% 4
Uzbekistan Uzbekistan -14.4 -21.4% 120
St. Vincent & Grenadines St. Vincent & Grenadines 12.5 +222% 55
Vanuatu Vanuatu -5.41 -27.6% 113
Samoa Samoa -19.3 +15.6% 123
Kosovo Kosovo 3.45 -9.77% 96
South Africa South Africa 4.34 -79.9% 90
Zambia Zambia 8.7 -23.3% 70

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'FS.AST.CGOV.GD.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'FS.AST.CGOV.GD.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))