Children out of school, primary, female

Source: worldbank.org, 01.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Albania Albania 8,802 +22.5% 51
Andorra Andorra 182 -12.5% 92
Armenia Armenia 8,110 +12.8% 54
Australia Australia 2,081 -20.5% 68
Austria Austria 2,964 +65.4% 64
Azerbaijan Azerbaijan 14,382 -44.8% 46
Belgium Belgium 4,873 -16.2% 59
Benin Benin 88,224 -21.4% 20
Burkina Faso Burkina Faso 604,459 +12.5% 5
Bulgaria Bulgaria 6,211 +1.95% 57
Bahrain Bahrain 4,740 +319% 60
Bosnia & Herzegovina Bosnia & Herzegovina 12,162 +5.52% 48
Belarus Belarus 20,062 +16.3% 39
Belize Belize 2,017 +73.3% 71
Bolivia Bolivia 21,648 -20.5% 37
Brazil Brazil 265,585 -35% 13
Barbados Barbados 666 +44.2% 83
Brunei Brunei 593 -12.3% 87
Bhutan Bhutan 329 +384% 90
Botswana Botswana 17,576 -28.9% 42
Canada Canada 51,359 +3.75% 26
Switzerland Switzerland 591 +36.2% 88
Chile Chile 15,069 -27.8% 44
Côte d’Ivoire Côte d’Ivoire 293,992 +1.27% 11
Colombia Colombia 131,157 +3.56% 15
Costa Rica Costa Rica 10,331 +3.89% 50
Cuba Cuba 14,402 +97.4% 45
Cayman Islands Cayman Islands 643 +3.71% 85
Germany Germany 22,689 +33.8% 36
Dominica Dominica 383 -4.96% 89
Denmark Denmark 1,150 +27.1% 76
Dominican Republic Dominican Republic 39,475 -27.3% 30
Eritrea Eritrea 113,518 -1.82% 17
Spain Spain 23,033 -5.23% 35
Estonia Estonia 772 -14.9% 81
Ethiopia Ethiopia 2,371,739 -3.25% 2
Finland Finland 3,689 +45.6% 62
Micronesia (Federated States of) Micronesia (Federated States of) 993 +1.22% 78
Georgia Georgia 1,584 -93.8% 73
Guatemala Guatemala 88,928 -2.56% 19
Hong Kong SAR China Hong Kong SAR China 2,561 +2,052% 66
Honduras Honduras 116,411 -7.69% 16
Hungary Hungary 6,403 -7.07% 56
Iceland Iceland 257 +16.3% 91
Israel Israel 17,822 +1.36% 41
Italy Italy 32,597 +16.4% 32
Jamaica Jamaica 12,046 -39.6% 49
Jordan Jordan 12,195 -24.4% 47
Kazakhstan Kazakhstan 62,099 -2.7% 23
Kyrgyzstan Kyrgyzstan 20,476 +19.9% 38
Cambodia Cambodia 108,346 +56.4% 18
Kiribati Kiribati 654 +40.6% 84
South Korea South Korea 15,583 -23.7% 43
Laos Laos 31,254 +28.8% 33
Liberia Liberia 153,645 +5.84% 14
Lesotho Lesotho 45,042 -1.91% 28
Luxembourg Luxembourg 35 -90.3% 97
Latvia Latvia 620 +16.8% 86
Macao SAR China Macao SAR China 2,850 +29.5% 65
Maldives Maldives 1,088 +9,791% 77
Marshall Islands Marshall Islands 15 -40% 99
North Macedonia North Macedonia 1,401 -64% 75
Malta Malta 941 +32.2% 79
Mongolia Mongolia 8,552 -1.62% 52
Malaysia Malaysia 59,902 +24.7% 24
Niger Niger 870,277 +2.63% 3
Netherlands Netherlands 1,471 +302% 74
Norway Norway 2,077 +9.89% 69
Nauru Nauru 88 +3.53% 94
New Zealand New Zealand 4,572 +88.8% 61
Oman Oman 19,469 +9.43% 40
Pakistan Pakistan 4,270,165 -4.07% 1
Panama Panama 8,262 -14.6% 53
Philippines Philippines 586,366 -7.48% 6
Palau Palau 125 +3,025% 93
Paraguay Paraguay 44,541 -1.01% 29
Palestinian Territories Palestinian Territories 25,457 +14.4% 34
Qatar Qatar 5,786 -46.4% 58
Romania Romania 77,792 +70.6% 21
Russia Russia 72,428 +35.6% 22
Saudi Arabia Saudi Arabia 34,898 +19.9% 31
Senegal Senegal 285,564 +3.28% 12
Singapore Singapore 920 +11.2% 80
El Salvador El Salvador 45,409 -0.648% 27
San Marino San Marino 42 -8.7% 96
Serbia Serbia 2,051 -53.6% 70
Slovakia Slovakia 3,148 -35.5% 63
Slovenia Slovenia 763 -18.8% 82
Sweden Sweden 2,102 +10.7% 67
Seychelles Seychelles 83 +7.79% 95
Syria Syria 408,010 -18.5% 9
Chad Chad 504,084 +1.51% 7
Tunisia Tunisia 7,858 +194% 55
Tuvalu Tuvalu 19 -50% 98
Tanzania Tanzania 769,035 +1.33% 4
United States United States 448,218 -9.52% 8
Uzbekistan Uzbekistan 53,023 +135% 25
Vanuatu Vanuatu 1,978 +68.9% 72
South Africa South Africa 395,363 +281% 10

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SE.PRM.UNER.FE'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SE.PRM.UNER.FE'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))