Adjusted savings: energy depletion (% of GNI)

Source: worldbank.org, 03.09.2025

Year: 2021

Flag Country Value Value change, % Rank
Aruba Aruba 0 128
Afghanistan Afghanistan 0.0182 +219% 101
Angola Angola 22.5 +44.5% 3
Albania Albania 0.597 +71.5% 50
Argentina Argentina 1.59 +97.9% 38
Armenia Armenia 0.00000 +88.1% 127
Antigua & Barbuda Antigua & Barbuda 0 128
Australia Australia 1.63 +46.1% 37
Austria Austria 0.0538 +179% 83
Azerbaijan Azerbaijan 15.9 +115% 8
Burundi Burundi 0 128
Belgium Belgium 0.0239 +112% 96
Benin Benin 0 -100% 128
Burkina Faso Burkina Faso 0 128
Bangladesh Bangladesh 0.465 +8.8% 56
Bulgaria Bulgaria 0.0564 +109% 82
Bahamas Bahamas 0 128
Bosnia & Herzegovina Bosnia & Herzegovina 0.041 +65.6% 89
Belarus Belarus 0.672 +130% 48
Belize Belize 0.155 +96.1% 74
Bermuda Bermuda 0 128
Bolivia Bolivia 2.29 +88.7% 32
Brazil Brazil 2.26 +138% 33
Barbados Barbados 0.297 +159% 65
Brunei Brunei 16 +74.5% 7
Bhutan Bhutan 0 128
Botswana Botswana 0.353 +88.3% 61
Central African Republic Central African Republic 0 128
Canada Canada 1.38 +518% 40
Switzerland Switzerland 0.000395 +117% 121
Chile Chile 0.0103 +53.6% 105
China China 0.689 +90.5% 47
Côte d’Ivoire Côte d’Ivoire 0.532 +77.1% 51
Cameroon Cameroon 2.33 +80.1% 31
Congo - Kinshasa Congo - Kinshasa 0.463 +84.1% 57
Congo - Brazzaville Congo - Brazzaville 21.9 +30.3% 4
Colombia Colombia 3.54 +111% 26
Comoros Comoros 0 128
Cape Verde Cape Verde 0.526 +54.5% 52
Costa Rica Costa Rica 0.00808 +175% 109
Curaçao Curaçao 0 128
Cyprus Cyprus 0 128
Czechia Czechia 0.0479 +101% 86
Germany Germany 0.0295 +193% 94
Djibouti Djibouti 0 128
Dominica Dominica 0 128
Denmark Denmark 0.229 +111% 71
Dominican Republic Dominican Republic 0 128
Algeria Algeria 12.8 +68.3% 10
Ecuador Ecuador 5.75 +146% 22
Egypt Egypt 3.57 +64.8% 25
Spain Spain 0.000247 +311% 122
Estonia Estonia 0.751 +100% 44
Ethiopia Ethiopia 0.00000 +96.7% 125
Finland Finland 0.0344 +118% 92
Fiji Fiji 0 128
France France 0.00551 +108% 113
Faroe Islands Faroe Islands 0 128
Micronesia (Federated States of) Micronesia (Federated States of) 0 128
Gabon Gabon 11.3 +70.3% 12
United Kingdom United Kingdom 0.52 +100% 53
Georgia Georgia 0.00318 +95.7% 115
Ghana Ghana 2.61 +77.5% 29
Guinea Guinea 0 128
Gambia Gambia 0 128
Guinea-Bissau Guinea-Bissau 0 128
Equatorial Guinea Equatorial Guinea 18.8 +40.3% 6
Greece Greece 0.0147 +63.5% 102
Grenada Grenada 0 128
Guatemala Guatemala 0.0687 +115% 79
Guyana Guyana 19.6 +220% 5
Hong Kong SAR China Hong Kong SAR China 0.000241 +189% 123
Honduras Honduras 0.000928 +139% 119
Croatia Croatia 0.313 +139% 63
Haiti Haiti 0 128
Hungary Hungary 0.32 +183% 62
Indonesia Indonesia 1.98 +91.7% 34
India India 0.512 +92.4% 54
Ireland Ireland 0.0627 +242% 81
Iran Iran 5.01 +35.4% 23
Iraq Iraq 11.5 +57.7% 11
Iceland Iceland 0 128
Israel Israel 0.248 +84.9% 68
Italy Italy 0.0758 +114% 78
Jamaica Jamaica 0.256 +164% 67
Jordan Jordan 0.035 +129% 91
Japan Japan 0.00905 +97.4% 106
Kazakhstan Kazakhstan 8.74 +124% 16
Kenya Kenya 0 128
Kyrgyzstan Kyrgyzstan 0.0136 +30.6% 103
Cambodia Cambodia 0.0316 +14,252% 93
Kiribati Kiribati 0 128
St. Kitts & Nevis St. Kitts & Nevis 0 128
South Korea South Korea 0.0247 +138% 95
Laos Laos 0 128
Lebanon Lebanon 0 128
Liberia Liberia 0 128
Libya Libya 13.5 +1,015% 9
St. Lucia St. Lucia 0 128
Sri Lanka Sri Lanka 0 128
Lesotho Lesotho 0 128
Lithuania Lithuania 0.00734 +80.3% 112
Luxembourg Luxembourg 0 128
Latvia Latvia 0.0511 +111% 85
Macao SAR China Macao SAR China 0 128
Morocco Morocco 0.00797 +46.4% 110
Moldova Moldova 0.00849 +91.6% 108
Madagascar Madagascar 0.047 +57.4% 87
Maldives Maldives 0 128
Mexico Mexico 1.91 +128% 35
North Macedonia North Macedonia 0.00046 +85.8% 120
Mali Mali 0 128
Malta Malta 0 128
Myanmar (Burma) Myanmar (Burma) 2.38 +97.9% 30
Montenegro Montenegro 0.0414 +55.8% 88
Mongolia Mongolia 3.39 +46.7% 27
Mozambique Mozambique 0.603 +89.9% 49
Mauritania Mauritania 0.0204 +30.7% 98
Mauritius Mauritius 0 128
Malawi Malawi 0.012 +97% 104
Malaysia Malaysia 4.23 +97.2% 24
Namibia Namibia 0 128
Niger Niger 0.238 +29.2% 70
Nigeria Nigeria 2.73 +72.2% 28
Nicaragua Nicaragua 0.0185 +153% 100
Netherlands Netherlands 0.302 +317% 64
Norway Norway 7.71 +142% 19
Nepal Nepal 0.00279 +88.6% 116
Nauru Nauru 0 128
New Zealand New Zealand 0.361 +41.6% 60
Oman Oman 24 +56.1% 2
Pakistan Pakistan 0.914 +26.1% 42
Panama Panama 0 128
Peru Peru 0.295 +87.5% 66
Philippines Philippines 0.182 +65.7% 73
Papua New Guinea Papua New Guinea 9.37 +69.5% 14
Poland Poland 0.146 +179% 75
Puerto Rico Puerto Rico 0 128
Portugal Portugal 0.0402 +115% 90
Paraguay Paraguay 0.0633 +152% 80
Palestinian Territories Palestinian Territories 0 128
Qatar Qatar 8.75 +38.6% 15
Romania Romania 0.735 +228% 45
Russia Russia 8.56 +151% 17
Rwanda Rwanda 0.00117 +80.4% 117
Sudan Sudan 0.436 +78.7% 58
Senegal Senegal 0.00113 -23.3% 118
Singapore Singapore 0 128
Solomon Islands Solomon Islands 0 128
Sierra Leone Sierra Leone 0 128
El Salvador El Salvador 0.000134 +142% 124
Somalia Somalia 0 128
Serbia Serbia 0.4 +101% 59
São Tomé & Príncipe São Tomé & Príncipe 0 128
Suriname Suriname 7.71 +166% 20
Slovakia Slovakia 0.00319 +155% 114
Slovenia Slovenia 0.0077 +61.9% 111
Sweden Sweden 0.0203 +107% 99
Eswatini Eswatini 0.00000 +76.7% 126
Seychelles Seychelles 0 128
Turks & Caicos Islands Turks & Caicos Islands 0 128
Chad Chad 9.58 +67% 13
Togo Togo 0 128
Thailand Thailand 1.38 +101% 39
Tajikistan Tajikistan 0.24 +157% 69
Timor-Leste Timor-Leste 57.2 +110% 1
Tonga Tonga 0 128
Trinidad & Tobago Trinidad & Tobago 6.31 +22.5% 21
Tunisia Tunisia 1.17 +73.2% 41
Turkey Turkey 0.12 +129% 76
Tuvalu Tuvalu 0 128
Tanzania Tanzania 0.209 +79.2% 72
Uganda Uganda 0 128
Ukraine Ukraine 0.69 +174% 46
Uruguay Uruguay 0.00893 +163% 107
United States United States 0.755 +416% 43
Uzbekistan Uzbekistan 8.44 +411% 18
St. Vincent & Grenadines St. Vincent & Grenadines 0 128
Vietnam Vietnam 0.474 +99.9% 55
Vanuatu Vanuatu 0 128
Samoa Samoa 0 128
Kosovo Kosovo 0.0525 +70.7% 84
South Africa South Africa 1.74 +58.5% 36
Zambia Zambia 0.0231 +77% 97
Zimbabwe Zimbabwe 0.113 +43.3% 77

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'NY.ADJ.DNGY.GN.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'NY.ADJ.DNGY.GN.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))