Publications by Luz Melo
Publish Document
df1 = read.csv("C:\\Users\\luzya\\OneDrive\\Escritorio\\PhD program\\Fall 2024\\DS 8998 - Farhana\\df_ex2.csv") df2 = read.csv("C:\\Users\\luzya\\OneDrive\\Escritorio\\PhD program\\Fall 2024\\DS 8998 - Farhana\\df_ex1.csv") head(df2, 10) %>% kable() %>% kable_styling( bootstrap_options = c("striped", "hover", "condensed", "responsive"), ...
19511 sym R (19335 sym/66 pcs) 1 img 18 tbl
Ethical Data Modeling in Data Science Projects: A Step-by-Step Guide
Privacy-Preserving Data Mining Discrimination-Aware Modelling Comprehensive Models and Explainable AI In this section we introduce the privacy, discrimination, and explainable aspects of modeling. We started with the different ways in which we can reconcile privacy with data science modelling. Privacy-Preserving Data Mining We will start wit...
2708 sym Python (2026 sym/10 pcs) 6 img
Ethical Model Evaluation in Data Science Projects: A Step-by-Step Guide
Ethical Measurement Ethical Interpretation of the Results Ethical Reporting Summary Ethical Evaluation in Data Science When engaging in data science projects, especially those involving predictive modeling or analysis of sensitive data, it is crucial to conduct a thorough ethical evaluation. This evaluation revolves around three fundamental ...
8033 sym Python (5090 sym/15 pcs) 1 img 1 tbl
Ethical Data Preprocessing in Data Science Projects: A Step-by-Step Guide
df1 = read.csv("C:\\Users\\luzya\\OneDrive\\Escritorio\\PhD program\\Fall 2024\\DS 8998 - Farhana\\df_ex2.csv") df2 = read.csv("C:\\Users\\luzya\\OneDrive\\Escritorio\\PhD program\\Fall 2024\\DS 8998 - Farhana\\df_ex1.csv") head(df2, 10) %>% kable() %>% kable_styling( bootstrap_options = c("striped", "hover", "condensed", "responsive"), ...
19509 sym R (18665 sym/67 pcs) 1 img 15 tbl
Ethical Data Preprocessing in Data Science Projects: A Step-by-Step Guide
Defining and Measuring Privacy k-anonymity Suppressing, Grouping, and Perturbing Homegenity and Linkage Attacks df1 = read.csv("C:\\Users\\luzya\\OneDrive\\Escritorio\\PhD program\\Fall 2024\\DS 8998 - Farhana\\df_ex2.csv") df2 = read.csv("C:\\Users\\luzya\\OneDrive\\Escritorio\\PhD program\\Fall 2024\\DS 8998 - Farhana\\df_ex1.csv") head(df2, ...
17260 sym Python (13495 sym/49 pcs) 1 img 15 tbl
Ethical Data Preprocessing in Data Science Projects: A Step-by-Step Guide
Defining and Measuring Privacy k-anonymity Suppressing, Grouping, and Perturbing Homegenity and Linkage Attacks df1 = read.csv("C:\\Users\\luzya\\OneDrive\\Escritorio\\PhD program\\Fall 2024\\DS 8998 - Farhana\\df_ex2.csv") df2 = read.csv("C:\\Users\\luzya\\OneDrive\\Escritorio\\PhD program\\Fall 2024\\DS 8998 - Farhana\\df_ex1.csv") head(df2, ...
17260 sym Python (13495 sym/49 pcs) 1 img 15 tbl
Ethical Data Gathering in Data Science Projects: A Step-by-Step Guide
Privacy as a Human Right Regulations Privacy Mechanisms Decentralized Differential Privacy Bias Summary Privacy as a Human Right Regulations Privacy Mechanisms Encryption Hashing Quantum Computing Obfuscation Decentralized Differential Privacy Bias Summary...
305 sym
Data Science Ethics: Introduction
The Rise of Data Science (Ethics) Data Science Ethics Equilibrium Step-by-Step Examples Summary The Rise of Data Science (Ethics) Why Care? Right and Wrong Data Science Data Science Ethics Equilibrium The FAT Flow Framework for Data Science Ethics Step-by-Step Examples The sample data includes information on The Current Population Survey ...
1453 sym Python (1459 sym/6 pcs) 2 tbl
Ethical Data Preprocessing in Data Science Projects: A Step-by-Step Guide
Defining and Measuring Privacy k-anonymity Suppressing, Grouping, and Perturbing Homegenity and Linkage Attacks df1 = read.csv("C:\\Users\\luzya\\OneDrive\\Escritorio\\PhD program\\Fall 2024\\DS 8998 - Farhana\\df_ex2.csv") df2 = read.csv("C:\\Users\\luzya\\OneDrive\\Escritorio\\PhD program\\Fall 2024\\DS 8998 - Farhana\\df_ex1.csv") head(df2, ...
17260 sym Python (13495 sym/49 pcs) 1 img 15 tbl
Ethical Data Modeling in Data Science Projects: A Step-by-Step Guide
Privacy-Preserving Data Mining Discrimination-Aware Modelling Comprehensive Models and Explainable AI In this section we introduce the privacy, discrimination, and explainable aspects of modeling. We started with the different ways in which we can reconcile privacy with data science modelling. Privacy-Preserving Data Mining We will start wit...
2708 sym Python (2026 sym/10 pcs) 6 img