Publications by Kennedi Todd

Myeloid Cells Recluster

09.05.2022

Setup Load libraries library(ComplexUpset) # upset() library(dplyr) library(ggrepel) library(ggtree) library(gtools) # smartbind() library(parallel) #detectCores() library(Seurat) # Idents() library(tibble) # rownnames_to_column() library(UpSetR) # upset() options(mc.cores = detectCores() - 1) Read object mouse.annotated <- readRDS("../../r...

1589 sym R (41268 sym/99 pcs) 38 img

Gene Enrichment Analysis: Lymphocyte Subpopulations

09.05.2022

GEA with p_val_adj of 0.05 Setup # libraries library(gprofiler2) # read data isoform.df <- read.table("../../results/recluster/lymphocytes/DEGs/lymphocytes_DEGs_E4_vs_E3.tsv",sep="\t",header=TRUE) age.df <- read.table("../../results/recluster/lymphocytes/DEGs/lymphocytes_DEGs_14_vs_2_months.tsv",sep="\t",header=TRUE) sex.df <- read.table("../.....

117 sym R (650 sym/3 pcs)

Lymphocytes Recluster

09.05.2022

Setup library(ComplexUpset) # upset() library(dplyr) library(ggrepel) library(ggtree) # BuildClusterTree() library(gtools) library(parallel) #detectCores() library(Seurat) # Idents() library(tibble) # rownnames_to_column() library(UpSetR) # fromList() options(mc.cores = detectCores() - 1) mouse.annotated <- readRDS("../../rObjects/mouse_annot...

1201 sym R (29407 sym/84 pcs) 31 img

APP Results

05.05.2022

Notes This only compares SVs that made the VCF file and that were converted to BED. CNVs, translocations, aneuploidy, and complex SVs are not present in the VCF. This compares mainly insertion, deletions, and duplications. Intersect means a filter was applied. If file A intersects file B then file B is used as a filter. So, unique features in A...

1088 sym R (1850 sym/16 pcs)

Gene Enrichment Analysis: Myeloid-like and Vascular Cells

04.05.2022

GEA with p_val_adj of 0.1 Setup # libraries library(gprofiler2) # read data isoform.df <- read.table("../../results/recluster/myeloid_like_and_vascular/DEGs/myeloid_like_and_vascular_E4_vs_E3_DEGs.tsv",sep="\t",header=TRUE) age.df <- read.table("../../results/recluster/myeloid_like_and_vascular/DEGs/myeloid_like_and_vascular_14_vs_2_months_DEGs...

1308 sym R (1065 sym/11 pcs)

Myeloid-like and Vascular Cells Recluster

03.05.2022

Setup Load libraries library(ComplexUpset) # upset() library(dplyr) library(ggrepel) library(ggtree) library(gtools) # smartbind() library(parallel) #detectCores() library(Seurat) # Idents() library(tibble) # rownnames_to_column() library(UpSetR) # upset() options(mc.cores = detectCores() - 1) Read object mouse.annotated <- readRDS("../../r...

1368 sym R (33756 sym/98 pcs) 38 img

Mouse scRNAseq CellBender Annotation

27.05.2022

Setup Working directory knitr::opts_knit$set( root.dir = "/research/labs/neurology/fryer/m214960/Ferreira_Da_Mesquita/scripts/R") Libraries # load packages library(ComplexUpset) # upset() library(dplyr) library(ggrepel) # geom_text_repel() library(ggtree) # BuildClusterTree() library(gtools) library(gridExtra) library(parallel) # detectCores...

4735 sym R (55100 sym/195 pcs) 84 img

Mouse scRNAseq Processing

27.05.2022

Setup Working directory knitr::opts_knit$set( root.dir = "/research/labs/neurology/fryer/m214960/Ferreira_Da_Mesquita/scripts/R") Load libraries # load libraries library(cowplot) # plot_grid() library(dplyr) # ungroup() library(ggplot2) # ggplot() library(grid) # grid.arrange() library(gridExtra) # grid.arrange() library(parallel) # dete...

15038 sym R (34978 sym/167 pcs) 41 img

Gene Enrichment Analysis: Myeloid Cell Subpopulations

21.04.2022

Setup # libraries library(gprofiler2) # read data isoform.df <- read.table("../../results/recluster/myeloid_cells/myeloid_cells_E4_vs_E3_DEGs.tsv",sep="\t",header=TRUE) age.df <- read.table("../../results/recluster/myeloid_cells/myeloid_cells_14_vs_2_months_DEGs.tsv",sep="\t",header=TRUE) sex.df <- read.table("../../results/recluster/myeloid_cel...

167 sym R (732 sym/5 pcs)

Gene Enrichment Analysis: Sex Up-regulated

20.04.2022

Setup # libraries library(gprofiler2) # read data isoform.df <- read.table("../../results/DEGs/E4_vs_E3_DEGs.tsv",sep="\t",header=TRUE) age.df <- read.table("../../results/DEGs/14_vs_2_months_DEGs.tsv",sep="\t",header=TRUE) sex.df <- read.table("../../results/DEGs/female_vs_male_DEGs.tsv",sep="\t",header=TRUE) # filter by pval isoform.df <- iso...

646 sym R (801 sym/9 pcs)