Publications by Daniel Lee

Week 3 Apply to data

20.09.2023

Import stock prices stocks <- tq_get(c("AAPL", "NFLX", "AMZN"), get = "stock.prices", from = "2016-01-01") stocks ## # A tibble: 5,823 × 8 ## symbol date open high low close volume adjusted ## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> ## 1 AAPL 2016-01-04 25.7 26.3 ...

83 sym Python (2879 sym/7 pcs) 1 img

Apply3

20.09.2023

# Load packages library(tidyverse) library(tidyquant) 1 Get stock prices and convert to returns Ra <- c("NKE", "AAPL", "SBUX") %>% tq_get(get = "stock.prices", from = "2022-01-01") %>% group_by(symbol) %>% tq_transmute(select = adjusted, mutate_fun = periodReturn, period = "monthl...

203 sym R (3054 sym/11 pcs)

Codealong3_Performace Analysis

20.09.2023

# Load packages library(tidyverse) ## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ── ## ✔ dplyr 1.1.3 ✔ readr 2.1.4 ## ✔ forcats 1.0.0 ✔ stringr 1.5.0 ## ✔ ggplot2 3.4.3 ✔ tibble 3.2.1 ## ✔ lubridate 1.9.2 ✔ tid...

142 sym R (5205 sym/12 pcs)

Apply3

20.09.2023

# Load packages library(tidyverse) library(tidyquant) 1 Get stock prices and convert to returns Ra <- c("AAPL", "TSLA", "NFLX") %>% tq_get(get = "stock.prices", from = "2010-01-01") %>% group_by(symbol) %>% tq_transmute(select = adjusted, mutate_fun = periodReturn, period = "month...

203 sym R (3082 sym/11 pcs)

Week 4: Real World Applications 3

20.09.2023

Economic Dashboard Market Indicators Economic Indicators What is your reading of the economy? Make your argument based on your analysis of the given charts. Discuss timing and depth of changes in the economic data relative to recessions in at least 50 words....

274 sym

DAT3100: Apply 1 - Superbowl commercials

20.09.2023

Superbowl commercials: Build a regression model to predict the Youtube like count (like_count). Use the youtube dataset. Import Data youtube <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2021/2021-03-02/youtube.csv') ## Rows: 247 Columns: 25 ## ── Column specification ────────�...

352 sym 1 img 5 tbl

Apply 2

23.09.2023

## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ── ## ✔ dplyr 1.1.3 ✔ readr 2.1.4 ## ✔ forcats 1.0.0 ✔ stringr 1.5.0 ## ✔ ggplot2 3.4.3 ✔ tibble 3.2.1 ## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0 ## ✔ purrr 1.0.2...

2142 sym 4 img

Apply 1

17.09.2023

library(tidyverse) ## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ── ## ✔ dplyr 1.1.3 ✔ readr 2.1.4 ## ✔ forcats 1.0.0 ✔ stringr 1.5.0 ## ✔ ggplot2 3.4.3 ✔ tibble 3.2.1 ## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0 ## ...

70 sym R (7469 sym/32 pcs) 1 img

Document

15.09.2023

Import data flights ## # A tibble: 336,776 × 19 ## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time ## <int> <int> <int> <int> <int> <dbl> <int> <int> ## 1 2013 1 1 517 515 2 830 819 ## 2 2013 1 1 533 529 ...

512 sym Python (19789 sym/51 pcs) 1 img

Apply to data 2

15.09.2023

Import stock prices stocks <- tq_get(c("AAPL", "NFLX", "AMZN"), get = "stock.prices", from = "2016-01-01") stocks ## # A tibble: 5,814 × 8 ## symbol date open high low close volume adjusted ## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> ## 1 AAPL 2016-01-04 25.7 26.3 ...

50 sym Python (1086 sym/3 pcs) 1 img