Publications by Daniel Lee

Document

18.06.2024

# Load packages # Core library(tidyverse) library(tidyquant) Goal Visualize and examine changes in the underlying trend in the performance of your portfolio in terms of Sharpe Ratio. Choose your stocks. from 2012-12-31 to present 1 Import stock prices #choose stocks symbols <- c("COST", "TSLA", "NFLX", "GOOG") prices <- tq_get(x = symbols,...

1161 sym R (3170 sym/16 pcs) 1 img

Apply to your Data 9 FIN3100

18.06.2024

# Load packages # Core library(tidyverse) library(tidyquant) Goal Visualize and examine changes in the underlying trend in the performance of your portfolio in terms of Sharpe Ratio. Choose your stocks. from 2012-12-31 to present 1 Import stock prices symbols <-c("NVDA", "MSFT", "AMD", "TSLA") prices <- tq_get(x = symbols, g...

1817 sym R (3805 sym/17 pcs) 1 img

Apply 9

18.06.2024

Import your data data <- read_excel("../00_data/MyData.xlsx") Chapter 14 Tools Detect matches data$Brand ## [1] "Toyota" "Honda" "Ford" "Maruti" "Hyundai" ## [6] "Tata" "Mahindra" "Volkswagen" "Audi" "BMW" ## [11] "Mercedes" "Ford" "Hyundai" "Tata" "Maruti" ## [16] "Honda" ...

111 sym

Code Along 9 FIN3100

17.06.2024

# Load packages # Core library(tidyverse) library(tidyquant) library(scales) library(ggrepel) library(scales) Goal Collect individual returns into a portfolio by assigning a weight to each stock five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31 1 Import stock prices symbols <-c("SPY", "EFA", "IJS", ...

446 sym R (5282 sym/19 pcs) 3 img

Code Along 9 ch14

17.06.2024

# Load package library(tidyverse) library(tidyquant) library(readr) library(janitor) library(nycflights13) Intoduction Sting Basics chac_data <- "Im ´Very´ Hungry." stringr::str_length("I am hungry") ## [1] 11 stringr::str_c(c("I", " am"), collapse = "") ## [1] "I am" stringr::str_c("I", " am", sep = " ;") ## [1] "I ; am" str_sort(c("John", "M...

339 sym R (8625 sym/59 pcs)

Document

14.06.2024

# Load packages # Core library(tidyverse) library(tidyquant) Goal Visualize and examine changes in the underlying trend in the downside risk of your portfolio in terms of kurtosis. Choose your stocks. from 2012-12-31 to present 1 Import stock prices #choose stocks symbols <- c("COST", "TSLA", "NFLX", "GOOG") prices <- tq_get(x = symbols, ...

1068 sym R (2667 sym/14 pcs) 1 img

Document

13.06.2024

# Load packages # Core library(tidyverse) library(tidyquant) Goal Collect individual returns into a portfolio by assigning a weight to each stock five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31 1 Import stock prices #choose stocks symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG") prices <- tq_get(...

466 sym R (3889 sym/16 pcs) 3 img

Apply8FIN3100

13.06.2024

# Load packages # Core library(tidyverse) library(tidyquant) Goal Visualize and examine changes in the underlying trend in the downside risk of your portfolio in terms of kurtosis. Choose your stocks. from 2012-12-31 to present 1 Import stock prices symbols <-c("INTL", "NVDA", "MSFT", "AMD") prices <- tq_get(x = symbols, get...

1192 sym R (3101 sym/14 pcs) 2 img

Apply 8

13.06.2024

1. Import your data Import two related datasets from TidyTuesday Project. ufo_sightings <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2023/2023-06-20/ufo_sightings.csv') ## Rows: 96429 Columns: 12 ## ── Column specification ────────────────────────�...

1868 sym

Code Along 8 fin3100

12.06.2024

# Load packages # Core library(tidyverse) library(tidyquant) library(scales) library(ggrepel) library(scales) Goal Collect individual returns into a portfolio by assigning a weight to each stock five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31 1 Import stock prices symbols <-c("SPY", "EFA", "IJS", ...

429 sym R (4371 sym/17 pcs) 3 img