Publications by Allen Baiju, Helena Lindsay, and Max St John

Fatal Encounters in Honolulu County, HI

05.10.2023

Overview The project explores the fatal encounters data in Hawaii, specifically in Honolulu County. Its aim is to analyze whether the compositions of ethnicities in a Tract has an effect on the number of fatal encounters in the given Tract. Steps: Explore the fatal encounters data through visualizations Retrieve Census data for Tract boundaries an...

3920 sym Python (14006 sym/20 pcs) 4 img 1 tbl

Exploratory Data Analysis on Bike Rental Businesses and Census Data in Atlanta

28.09.2023

Step 1. Download the Census ACS 5-year estimate data for Census Tracts in Fulton and DeKalb counties, focusing on commuting. FD_tract <- suppressMessages( get_acs(geography = "tract", # or "block group", "county", "state" etc. state = "GA", county = c("Fulton", "Dekalb"), variables = c(hhincome = 'B19019_001', ...

3976 sym Python (16325 sym/44 pcs) 3 img 2 tbl

Change detection using the CUSUM method

17.09.2023

Preparing the data library(reshape2) library(ggplot2) library(plotly) library(dplyr) library(knitr) rm(list = ls()) data <- read.delim('/Users/helenalindsay/Documents/Fall_23/ISYE6501/hw3/temps.txt') colnames(data) <- sub("X", "", colnames(data)) set.seed(1) Visualizing data years <- melt(data, id.vars = c("DAY"),variable.name = "YEAR",value.nam...

684 sym R (2682 sym/12 pcs) 4 img 3 tbl

Exploring trends in businesses in Boulder County

16.09.2023

Prepare the yelp data downloaded for Mini-Assignment 1. load("/Users/helenalindsay/Documents/Fall_23/CP8883/Yelpdata.RData") Delete duplicated rows. no_duplicates <- combined_yelp[!duplicated(combined_yelp$name), ] Flatten nested columns that have multiple variables in one column. concate_list <- function(x){ # x is a data frame with columns "a...

2068 sym R (2786 sym/10 pcs) 3 img 1 tbl

Yelp API

11.09.2023

Install all required packages tidycensus::census_api_key(Sys.getenv("census_api")) devtools::install_github("OmaymaS/yelpr") library(tigris) library(tidycensus) library(sf) library(tmap) library(jsonlite) library(tidyverse) library(httr) library(reshape2) library(here) library(yelpr) library(knitr) Get the Census Track boundaries using the Census ...

1449 sym R (6863 sym/20 pcs) 1 tbl

Yelp API

11.09.2023

Install all required packages tidycensus::census_api_key(Sys.getenv("census_api")) devtools::install_github("OmaymaS/yelpr") library(tigris) library(tidycensus) library(sf) library(tmap) library(jsonlite) library(tidyverse) library(httr) library(reshape2) library(here) library(yelpr) library(knitr) Get the Census Track boundaries using the Census ...

1449 sym R (6866 sym/20 pcs) 1 tbl

Midterm

10.10.2020

https://www.rdocumentation.org/packages/car/versions/1.2-16 Package Overview Summary “car”, the name of the package, is an acronym for Companion to Applied Regression. This package isn’t used to perform Applied Regression techniques, it compliments these techniques by providing numerous functions that perform tests, creates visualizations...

12491 sym R (1511 sym/15 pcs) 6 img

Support for Environment Issues-text mining

30.10.2020

Example News Sources Tampa Bay Times (Florida) TB.Time <- read_rtf("TBT.RTF") TB.Times <- tibble(TB.Time) TB.Times$text <- TB.Times$TB.Time TBT.words <- TB.Times %>% unnest_tokens(word, text)%>% anti_join(stop_words) %>% count(word, sort=TRUE) ## Joining, by = "word" TBT_sentiment_affin <- TBT.words %>% inner_join(get_sentiments("afinn"...

8065 sym R (11019 sym/114 pcs) 14 img

Country Economics Analysis

30.10.2020

Flex Dashboard Example Helena Lindsay — 9/18/2020 Column Pseudocode Create scatterplot of data; CPI vs. HDI Add title and axis labels; italicize axis labels Scale and intervals for axes Make points circles Remove vertical background lines Rename regions to match graphic legend Color points by region Add red regression line Label one ...

515 sym

NBA Clustering

30.10.2020

Overview You are a scout for the worst team in the NBA, probably the Wizards. Your general manager just heard about Data Science and thinks it can solve all the teams problems!!! She wants you to figure out a way to find players that are high performing but maybe not highly paid that you can steal to get your team out of the toilet! Objectives ...

4743 sym R (9846 sym/28 pcs) 16 img