Trademark applications, nonresident, by count

Source: worldbank.org, 03.09.2025

Year: 2021

Flag Country Value Value change, % Rank
Albania Albania 7,596 +8.33% 63
Andorra Andorra 2,294 +61.8% 102
United Arab Emirates United Arab Emirates 17,295 +41.7% 28
Argentina Argentina 15,713 +11.5% 32
Armenia Armenia 7,648 -0.378% 61
Antigua & Barbuda Antigua & Barbuda 1,826 +16.1% 105
Australia Australia 76,801 +29% 6
Austria Austria 8,815 -0.0227% 50
Azerbaijan Azerbaijan 9,023 +8.09% 49
Bangladesh Bangladesh 4,696 +20.1% 77
Bulgaria Bulgaria 4,076 +15.4% 84
Bahrain Bahrain 13,703 +44% 39
Bosnia & Herzegovina Bosnia & Herzegovina 9,935 +11.7% 44
Belarus Belarus 14,934 +4.08% 34
Bolivia Bolivia 3,661 +34.3% 90
Brazil Brazil 47,273 +27.2% 13
Barbados Barbados 793 +5.45% 111
Brunei Brunei 4,179 +12.7% 82
Bhutan Bhutan 2,045 -3.58% 103
Canada Canada 109,335 +29.1% 4
Switzerland Switzerland 70,091 +25.1% 7
Chile Chile 15,595 +18% 33
China China 261,982 +14.3% 2
Colombia Colombia 21,964 +18.5% 25
Cape Verde Cape Verde 206 +51.5% 119
Costa Rica Costa Rica 7,091 +15.6% 64
Cuba Cuba 3,822 +10.9% 88
Curaçao Curaçao 2,626 +31.8% 99
Cyprus Cyprus 2,307 +9.23% 101
Czechia Czechia 5,010 +5.41% 72
Germany Germany 26,098 -0.874% 24
Djibouti Djibouti 315 +0.962% 117
Dominica Dominica 182 +5.2% 121
Denmark Denmark 4,288 +9.36% 80
Dominican Republic Dominican Republic 5,970 +18.8% 68
Algeria Algeria 9,197 +18.4% 48
Ecuador Ecuador 7,701 +21.8% 60
Egypt Egypt 17,325 +23.2% 27
Spain Spain 9,520 +11.4% 46
Estonia Estonia 3,043 +14.1% 97
Ethiopia Ethiopia 878 +1.86% 110
Finland Finland 3,571 +18.4% 92
France France 16,868 +4.49% 30
United Kingdom United Kingdom 227,170 +145% 3
Georgia Georgia 7,870 +9.43% 59
Gambia Gambia 3,076 +57.6% 96
Grenada Grenada 289 +39.6% 118
Hong Kong SAR China Hong Kong SAR China 45,546 +13% 14
Honduras Honduras 5,075 +38.7% 70
Croatia Croatia 3,973 +17.4% 86
Hungary Hungary 4,089 +11.2% 83
Indonesia Indonesia 35,760 -17.3% 18
India India 52,878 +25.1% 11
Iran Iran 17,194 +12% 29
Iraq Iraq 1,064 -16.5% 108
Iceland Iceland 9,266 +14.9% 47
Israel Israel 20,976 +22.7% 26
Italy Italy 11,299 +5.59% 42
Jamaica Jamaica 4,219 +14.6% 81
Jordan Jordan 4,522 +32.9% 79
Japan Japan 94,825 +21.3% 5
Kazakhstan Kazakhstan 16,019 +4.49% 31
Kyrgyzstan Kyrgyzstan 7,616 +11.2% 62
South Korea South Korea 60,825 +20.1% 9
Liechtenstein Liechtenstein 8,801 +5.43% 51
Sri Lanka Sri Lanka 3,626 -2.24% 91
Lithuania Lithuania 3,237 +4.25% 94
Latvia Latvia 3,303 +10.2% 93
Macao SAR China Macao SAR China 12,239 +9.79% 41
Morocco Morocco 14,579 +24.7% 35
Monaco Monaco 8,517 +18.8% 52
Moldova Moldova 8,438 +3.52% 54
Madagascar Madagascar 3,686 +24% 89
Mexico Mexico 57,324 +29.7% 10
North Macedonia North Macedonia 8,445 -20.9% 53
Malta Malta 327 -9.67% 116
Mongolia Mongolia 4,985 -2.25% 73
Mozambique Mozambique 5,037 +47.1% 71
Mauritius Mauritius 2,483 +26.2% 100
Malaysia Malaysia 32,586 +21.3% 21
Norway Norway 40,720 +30.8% 16
New Zealand New Zealand 42,569 +28.9% 15
Oman Oman 9,634 +33.5% 45
Pakistan Pakistan 8,079 +95.6% 55
Panama Panama 6,953 +24.7% 65
Peru Peru 13,048 +18.9% 40
Philippines Philippines 29,927 +16.1% 22
Papua New Guinea Papua New Guinea 906 +83.4% 109
Poland Poland 6,889 +13.3% 66
Portugal Portugal 5,406 +15.2% 69
Paraguay Paraguay 10,627 +14.8% 43
Qatar Qatar 8,042 +37% 56
Romania Romania 4,581 +2.16% 78
Russia Russia 68,261 +20.2% 8
Rwanda Rwanda 4,039 +68.7% 85
Saudi Arabia Saudi Arabia 13,719 +38.6% 38
Singapore Singapore 47,358 +20.1% 12
El Salvador El Salvador 7,895 +28.1% 57
Somalia Somalia 140 123
Serbia Serbia 13,759 +6.63% 37
São Tomé & Príncipe São Tomé & Príncipe 2,793 +93.6% 98
Suriname Suriname 782 +13.8% 112
Slovakia Slovakia 4,769 +12.3% 75
Slovenia Slovenia 3,211 -0.124% 95
Sweden Sweden 4,781 +19.8% 74
Seychelles Seychelles 411 -12.2% 115
Thailand Thailand 34,688 +14.4% 20
Tonga Tonga 482 +39.7% 114
Trinidad & Tobago Trinidad & Tobago 3,836 +132% 87
Turkey Turkey 39,220 +21.8% 17
Tuvalu Tuvalu 186 +1,140% 120
Uganda Uganda 1,765 +17.1% 106
Ukraine Ukraine 26,987 +11.7% 23
Uruguay Uruguay 6,240 +19.1% 67
United States United States 347,735 +8.38% 1
Uzbekistan Uzbekistan 7,879 +12.5% 58
St. Vincent & Grenadines St. Vincent & Grenadines 541 +90.5% 113
Vietnam Vietnam 35,648 +12.1% 19
Vanuatu Vanuatu 146 -19.8% 122
Samoa Samoa 1,567 -3.09% 107
Yemen Yemen 1,906 +24.6% 104
South Africa South Africa 14,077 -0.999% 36
Zambia Zambia 4,760 +43.9% 76

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'IP.TMK.NRCT'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'IP.TMK.NRCT'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))