Total fisheries production (metric tons)

Source: worldbank.org, 03.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Aruba Aruba 174 +4.2% 181
Afghanistan Afghanistan 13,150 +1.88% 137
Angola Angola 471,672 -11.3% 37
Albania Albania 17,552 -4% 130
United Arab Emirates United Arab Emirates 69,035 -2.23% 88
Argentina Argentina 853,775 -0.289% 26
Armenia Armenia 25,000 +26.9% 117
American Samoa American Samoa 1,329 +9.84% 171
Antigua & Barbuda Antigua & Barbuda 3,250 +0.775% 159
Australia Australia 290,290 +0.208% 46
Austria Austria 5,069 -3.83% 150
Azerbaijan Azerbaijan 2,256 +14.5% 162
Burundi Burundi 20,475 +1.92% 125
Belgium Belgium 18,953 +4.37% 127
Benin Benin 80,655 +2.4% 84
Burkina Faso Burkina Faso 30,938 +1.07% 113
Bangladesh Bangladesh 4,758,731 +2.98% 7
Bulgaria Bulgaria 15,105 -37.5% 134
Bahrain Bahrain 19,893 +16.7% 126
Bahamas Bahamas 9,346 +7.36% 140
Bosnia & Herzegovina Bosnia & Herzegovina 4,265 +2.43% 155
Belarus Belarus 7,520 -17.5% 146
Belize Belize 205,894 +7.17% 54
Brazil Brazil 1,497,393 +5.49% 20
Barbados Barbados 857 -1.16% 173
Brunei Brunei 21,080 +5.07% 122
Bhutan Bhutan 200 +2.98% 180
Botswana Botswana 209 +3.98% 179
Central African Republic Central African Republic 29,215 +3.56% 116
Canada Canada 870,640 -7.81% 24
Switzerland Switzerland 3,986 +3.53% 156
Chile Chile 4,214,240 +9.9% 10
China China 88,567,716 +3.05% 1
Côte d’Ivoire Côte d’Ivoire 106,143 -3.5% 76
Cameroon Cameroon 309,153 +3% 45
Congo - Brazzaville Congo - Brazzaville 65,111 -7.42% 91
Colombia Colombia 312,512 -3.11% 44
Cape Verde Cape Verde 7,794 -33.1% 145
Costa Rica Costa Rica 50,441 +7.53% 99
Cuba Cuba 29,924 -26.5% 115
Curaçao Curaçao 8,827 -64.7% 142
Cayman Islands Cayman Islands 213 +1.43% 178
Cyprus Cyprus 8,895 -3.98% 141
Czechia Czechia 22,640 -6.85% 120
Germany Germany 206,266 -6.37% 53
Dominica Dominica 293 +1.05% 177
Denmark Denmark 496,114 -2.15% 35
Dominican Republic Dominican Republic 21,760 +1.6% 121
Algeria Algeria 85,998 +2.4% 82
Ecuador Ecuador 1,811,374 +2.5% 18
Egypt Egypt 1,992,627 -0.466% 15
Eritrea Eritrea 1,595 +6.79% 168
Spain Spain 1,085,165 +0.197% 22
Estonia Estonia 74,740 +2.26% 86
Ethiopia Ethiopia 102,470 +38.7% 77
Finland Finland 138,965 -5.9% 69
Fiji Fiji 32,837 -1.14% 110
France France 735,366 +4.44% 29
Faroe Islands Faroe Islands 714,655 +8.88% 30
Gabon Gabon 31,097 +3.96% 112
Georgia Georgia 200,532 +0.0829% 56
Ghana Ghana 652,309 +35.3% 32
Guinea Guinea 336,050 +3% 43
Gambia Gambia 53,989 +1.47% 96
Guinea-Bissau Guinea-Bissau 63,850 +0.971% 92
Equatorial Guinea Equatorial Guinea 6,625 +4.79% 147
Greece Greece 207,502 +1.94% 52
Grenada Grenada 1,882 +52.5% 166
Guatemala Guatemala 58,570 +34.1% 95
Guam Guam 460 +252% 176
Guyana Guyana 37,207 +8.29% 106
Hong Kong SAR China Hong Kong SAR China 80,561 -32.4% 85
Honduras Honduras 93,386 +9.93% 78
Croatia Croatia 90,839 +1.54% 80
Haiti Haiti 18,395 +3.17% 129
Hungary Hungary 23,545 +4.89% 118
Indonesia Indonesia 22,032,425 +1.45% 2
India India 15,774,325 +9.29% 3
Ireland Ireland 247,553 -10.4% 48
Iraq Iraq 67,550 +1.77% 90
Iceland Iceland 1,486,086 +21.4% 21
Israel Israel 15,895 -6% 132
Italy Italy 276,306 -7.15% 47
Jamaica Jamaica 13,474 -4.54% 135
Jordan Jordan 3,257 +15.9% 158
Japan Japan 3,910,316 -7.2% 12
Kazakhstan Kazakhstan 52,130 +11.2% 98
Kenya Kenya 174,699 +2.93% 64
Kyrgyzstan Kyrgyzstan 20,729 +101% 124
Cambodia Cambodia 864,050 +0.893% 25
Kiribati Kiribati 203,296 +6.37% 55
St. Kitts & Nevis St. Kitts & Nevis 674 -0.3% 175
Kuwait Kuwait 2,350 -41.1% 160
Lebanon Lebanon 3,558 +1.19% 157
Liberia Liberia 30,713 +16.7% 114
Libya Libya 32,595 +1.98% 111
St. Lucia St. Lucia 1,652 +1.65% 167
Sri Lanka Sri Lanka 391,703 -7.49% 41
Lesotho Lesotho 1,915 +21.5% 165
Lithuania Lithuania 111,781 +10.4% 72
Latvia Latvia 62,378 -0.29% 93
Morocco Morocco 1,592,954 +11.1% 19
Madagascar Madagascar 152,318 +16.5% 67
Mexico Mexico 1,972,994 +3.19% 16
Marshall Islands Marshall Islands 91,643 -4.36% 79
North Macedonia North Macedonia 2,261 +3.99% 161
Mali Mali 119,196 +4.66% 71
Malta Malta 20,860 +10.3% 123
Myanmar (Burma) Myanmar (Burma) 3,061,808 +8.07% 13
Montenegro Montenegro 1,942 +16.6% 163
Mozambique Mozambique 461,914 +11.7% 38
Mauritius Mauritius 34,829 +7.68% 107
Malawi Malawi 194,013 +7.48% 58
Malaysia Malaysia 1,892,541 +7.79% 17
Namibia Namibia 416,009 +1.18% 40
New Caledonia New Caledonia 5,664 +19.5% 149
Niger Niger 48,170 +1.04% 100
Nigeria Nigeria 1,043,230 -3.48% 23
Nicaragua Nicaragua 85,301 -1.14% 83
Netherlands Netherlands 338,052 -0.64% 42
Norway Norway 4,262,103 +0.407% 9
Nepal Nepal 108,385 +2.94% 73
Nauru Nauru 106,751 -11.3% 75
New Zealand New Zealand 452,470 -1.71% 39
Oman Oman 751,823 -18.6% 28
Pakistan Pakistan 665,520 +0.747% 31
Panama Panama 198,492 -13.5% 57
Peru Peru 5,509,031 -18.1% 5
Philippines Philippines 4,120,499 +0.786% 11
Palau Palau 823 -1.45% 174
Papua New Guinea Papua New Guinea 240,192 +25.7% 49
Poland Poland 224,633 -8.75% 50
Puerto Rico Puerto Rico 1,592 +0.0811% 169
Portugal Portugal 180,859 -9.14% 62
Paraguay Paraguay 37,905 +19.5% 104
Palestinian Territories Palestinian Territories 4,922 -8.13% 152
French Polynesia French Polynesia 13,335 -9.9% 136
Qatar Qatar 18,537 +11.2% 128
Romania Romania 17,467 -3.31% 131
Russia Russia 5,339,717 -2.69% 6
Rwanda Rwanda 44,937 +5.97% 102
Saudi Arabia Saudi Arabia 184,108 +1.19% 61
Sudan Sudan 53,250 +6.56% 97
Senegal Senegal 535,356 +3.93% 34
Singapore Singapore 4,953 -10.8% 151
Solomon Islands Solomon Islands 59,717 -4.13% 94
Sierra Leone Sierra Leone 215,285 +5% 51
El Salvador El Salvador 73,034 +1.76% 87
Serbia Serbia 8,155 -15.6% 143
South Sudan South Sudan 47,047 +6.82% 101
Suriname Suriname 33,740 +4.88% 109
Slovakia Slovakia 4,509 +4.16% 154
Slovenia Slovenia 1,916 -1.98% 164
Sweden Sweden 163,355 -10.6% 65
Eswatini Eswatini 165 0% 182
Seychelles Seychelles 137,838 -4.43% 70
Syria Syria 6,185 +1.14% 148
Chad Chad 107,120 +3.89% 74
Togo Togo 22,656 +20.1% 119
Thailand Thailand 2,386,672 -0.78% 14
Tajikistan Tajikistan 4,673 +6.47% 153
Turkmenistan Turkmenistan 15,272 +0.46% 133
Timor-Leste Timor-Leste 7,832 +2.82% 144
Tonga Tonga 1,426 +17.3% 170
Trinidad & Tobago Trinidad & Tobago 13,076 -0.198% 138
Tunisia Tunisia 149,631 -0.473% 68
Turkey Turkey 849,826 +6.25% 27
Tuvalu Tuvalu 42,782 +37.6% 103
Tanzania Tanzania 159,271 +12.1% 66
Uganda Uganda 546,312 -29.3% 33
Ukraine Ukraine 37,351 -53.3% 105
Uruguay Uruguay 68,873 +3.75% 89
United States United States 4,741,660 -0.584% 8
Uzbekistan Uzbekistan 185,274 +7.76% 59
British Virgin Islands British Virgin Islands 1,135 +0.11% 172
Vietnam Vietnam 8,760,378 +5.67% 4
Vanuatu Vanuatu 88,121 +26.1% 81
Samoa Samoa 9,603 +4.54% 139
Yemen Yemen 178,200 +15% 63
South Africa South Africa 484,806 -3.9% 36
Zambia Zambia 185,076 +9.85% 60
Zimbabwe Zimbabwe 34,514 +24.2% 108

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'ER.FSH.PROD.MT'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'ER.FSH.PROD.MT'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))