Terrestrial protected areas (% of total land area)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 19.7 +4.23% 72
Afghanistan Afghanistan 3.6 0% 144
Angola Angola 10.8 +0.935% 115
Albania Albania 23.6 +26.9% 51
Andorra Andorra 27.3 +1.49% 45
United Arab Emirates United Arab Emirates 19.2 -1.03% 73
Argentina Argentina 8.8 +1.15% 123
Armenia Armenia 38.9 +57.5% 17
American Samoa American Samoa 16.4 -1.8% 89
Antigua & Barbuda Antigua & Barbuda 16.5 -17.1% 88
Australia Australia 22 +7.84% 60
Austria Austria 29.6 +0.339% 35
Azerbaijan Azerbaijan 22.1 +117% 59
Burundi Burundi 7.6 0% 130
Belgium Belgium 16.3 +4.49% 90
Benin Benin 29.7 +0.338% 34
Burkina Faso Burkina Faso 16.5 +0.61% 88
Bangladesh Bangladesh 4.2 -8.7% 140
Bulgaria Bulgaria 44.3 +8.05% 6
Bahrain Bahrain 11.7 -10% 112
Bahamas Bahamas 34.6 -5.46% 26
Bosnia & Herzegovina Bosnia & Herzegovina 9.5 +132% 119
Belarus Belarus 9.4 -31.9% 120
Belize Belize 37.3 -0.533% 23
Bermuda Bermuda 2.3 +9.52% 149
Bolivia Bolivia 30.9 0% 31
Brazil Brazil 30.6 0% 32
Barbados Barbados 1.1 -15.4% 154
Brunei Brunei 39.9 -14.9% 13
Bhutan Bhutan 51.6 +3.82% 4
Botswana Botswana 29.1 0% 37
Central African Republic Central African Republic 14.8 -18.2% 99
Canada Canada 12.9 +0.781% 107
Switzerland Switzerland 12.5 +3.31% 110
Chile Chile 21.6 +2.86% 63
China China 15.6 0% 94
Côte d’Ivoire Côte d’Ivoire 22.8 -0.87% 55
Cameroon Cameroon 11 0% 114
Congo - Kinshasa Congo - Kinshasa 14.9 +7.19% 98
Congo - Brazzaville Congo - Brazzaville 36.8 0% 24
Colombia Colombia 17 +3.66% 83
Comoros Comoros 33.7 -0.296% 27
Cape Verde Cape Verde 17.6 +507% 80
Costa Rica Costa Rica 26.5 -0.376% 46
Cuba Cuba 15.6 -3.7% 94
Curaçao Curaçao 16.7 +6.37% 86
Cayman Islands Cayman Islands 8.8 -18.5% 123
Cyprus Cyprus 38.6 -0.258% 19
Czechia Czechia 21.9 -1.35% 61
Germany Germany 39.3 +4.52% 16
Djibouti Djibouti 1.6 0% 152
Dominica Dominica 21.4 -2.73% 64
Denmark Denmark 15.8 -7.06% 93
Dominican Republic Dominican Republic 26.2 -0.758% 49
Algeria Algeria 4.7 +2.17% 137
Ecuador Ecuador 23.6 +0.426% 51
Egypt Egypt 13.2 +0.763% 106
Eritrea Eritrea 0 159
Spain Spain 28.1 0% 43
Estonia Estonia 22 +2.8% 60
Ethiopia Ethiopia 17 0% 83
Finland Finland 13.6 +1.49% 103
Fiji Fiji 3.9 -27.8% 142
France France 28.6 +0.704% 39
Faroe Islands Faroe Islands 2.4 +4.35% 148
Micronesia (Federated States of) Micronesia (Federated States of) 0 159
Gabon Gabon 22.7 +1.34% 56
United Kingdom United Kingdom 28.4 +2.16% 40
Georgia Georgia 22.8 +105% 55
Ghana Ghana 14.8 0% 99
Gibraltar Gibraltar 26.4 47
Guinea Guinea 37.6 0% 21
Gambia Gambia 7.6 -1.3% 130
Guinea-Bissau Guinea-Bissau 26.2 -3.32% 49
Equatorial Guinea Equatorial Guinea 19 -1.55% 74
Greece Greece 35 -0.568% 25
Grenada Grenada 8.8 -7.37% 123
Greenland Greenland 41.9 +1.95% 9
Guatemala Guatemala 20.1 0% 69
Guam Guam 4.2 -6.67% 140
Guyana Guyana 8.4 -1.18% 125
Hong Kong SAR China Hong Kong SAR China 42 +0.239% 8
Honduras Honduras 23.4 -0.426% 52
Croatia Croatia 38.4 -0.26% 20
Haiti Haiti 8.6 0% 124
Hungary Hungary 22.6 0% 57
Indonesia Indonesia 12 -1.64% 111
Isle of Man Isle of Man 4.6 -20.7% 138
India India 7.7 +2.67% 129
Ireland Ireland 14.4 0% 100
Iran Iran 8.6 0% 124
Iraq Iraq 1.5 0% 153
Iceland Iceland 20.9 +0.481% 67
Israel Israel 27.6 +12.7% 44
Italy Italy 21.6 0% 63
Jamaica Jamaica 19.9 -0.5% 70
Jordan Jordan 5.4 +20% 135
Japan Japan 29.5 -0.673% 36
Kazakhstan Kazakhstan 10.1 +1% 117
Kenya Kenya 14 +14.8% 101
Kyrgyzstan Kyrgyzstan 6.8 +1.49% 133
Cambodia Cambodia 39.8 +0.252% 14
Kiribati Kiribati 22.9 +2.23% 54
St. Kitts & Nevis St. Kitts & Nevis 16.9 -26.2% 84
South Korea South Korea 17.4 +2.35% 81
Kuwait Kuwait 17.1 +0.588% 82
Laos Laos 18.8 -1.05% 75
Lebanon Lebanon 7.9 +316% 127
Liberia Liberia 4 -2.44% 141
Libya Libya 0.1 0% 158
St. Lucia St. Lucia 18.2 -2.67% 78
Liechtenstein Liechtenstein 44.8 +5.16% 5
Sri Lanka Sri Lanka 30 +0.334% 33
Lesotho Lesotho 23.4 +9.86% 52
Lithuania Lithuania 17.8 +4.09% 79
Luxembourg Luxembourg 38.7 -30.6% 18
Latvia Latvia 18.5 +1.65% 76
Saint Martin (French part) Saint Martin (French part) 9.3 -27.3% 121
Morocco Morocco 2.1 -4.55% 150
Monaco Monaco 20.9 +105% 67
Moldova Moldova 11.5 +0.877% 113
Madagascar Madagascar 12.7 +69.3% 108
Maldives Maldives 3 +30.4% 146
Mexico Mexico 15.3 +4.79% 97
Marshall Islands Marshall Islands 16.6 +39.5% 87
North Macedonia North Macedonia 28.2 +83.1% 42
Mali Mali 7.5 0% 131
Malta Malta 28.9 -5.56% 38
Myanmar (Burma) Myanmar (Burma) 6.6 0% 134
Montenegro Montenegro 21.7 +56.1% 62
Mongolia Mongolia 19.8 0% 71
Northern Mariana Islands Northern Mariana Islands 2.8 0% 147
Mozambique Mozambique 29.5 0% 36
Mauritania Mauritania 0.6 0% 157
Mauritius Mauritius 5 +6.38% 136
Malawi Malawi 23.1 +0.873% 53
Malaysia Malaysia 13.3 0% 105
Namibia Namibia 39.9 0% 13
New Caledonia New Caledonia 59.6 -0.168% 2
Niger Niger 18.2 0% 78
Nigeria Nigeria 13.9 0% 102
Nicaragua Nicaragua 21.2 -0.469% 65
Netherlands Netherlands 22.9 +1.78% 54
Norway Norway 17.8 +0.565% 79
Nepal Nepal 23.6 0% 51
Nauru Nauru 0 159
New Zealand New Zealand 33.4 0% 28
Oman Oman 22 +464% 60
Pakistan Pakistan 19.2 +56.1% 73
Panama Panama 31.4 0% 30
Peru Peru 22.5 0% 58
Philippines Philippines 16 +0.629% 92
Palau Palau 31.4 -29% 30
Papua New Guinea Papua New Guinea 3.7 0% 143
Poland Poland 39.6 0% 15
Puerto Rico Puerto Rico 6.6 -1.49% 134
North Korea North Korea 2.4 0% 148
Portugal Portugal 22.8 -0.437% 55
Paraguay Paraguay 14.9 +4.2% 98
Palestinian Territories Palestinian Territories 10 0% 118
French Polynesia French Polynesia 1.8 -10% 151
Qatar Qatar 15.6 -1.27% 94
Romania Romania 24.6 +0.408% 50
Russia Russia 11.5 +0.877% 113
Rwanda Rwanda 9.1 0% 122
Saudi Arabia Saudi Arabia 18.5 +18.6% 76
Sudan Sudan 2.3 0% 149
Senegal Senegal 26.3 -0.379% 48
Singapore Singapore 4.6 -17.9% 138
Solomon Islands Solomon Islands 2.4 +20% 148
Sierra Leone Sierra Leone 12.6 -0.787% 109
El Salvador El Salvador 8.3 -3.49% 126
Somalia Somalia 0 159
Serbia Serbia 13.4 +65.4% 104
South Sudan South Sudan 15.4 -0.645% 96
São Tomé & Príncipe São Tomé & Príncipe 31.7 +8.19% 29
Suriname Suriname 14.8 +2.07% 99
Slovakia Slovakia 37.5 -0.266% 22
Slovenia Slovenia 40.5 +0.248% 11
Sweden Sweden 15.5 +0.649% 95
Eswatini Eswatini 4.2 -2.33% 140
Sint Maarten Sint Maarten 0.8 +14.3% 155
Seychelles Seychelles 68.1 +10.7% 1
Syria Syria 0.7 0% 156
Turks & Caicos Islands Turks & Caicos Islands 43.5 -2.03% 7
Chad Chad 21 0% 66
Togo Togo 28.1 +0.357% 43
Thailand Thailand 18.4 -0.541% 77
Tajikistan Tajikistan 22.6 +1.35% 57
Turkmenistan Turkmenistan 4.3 +34.4% 139
Timor-Leste Timor-Leste 16.1 +0.625% 91
Tonga Tonga 13.3 +5.56% 105
Trinidad & Tobago Trinidad & Tobago 30.6 0% 32
Tunisia Tunisia 7.9 0% 127
Turkey Turkey 7 0% 132
Tuvalu Tuvalu 20.2 +53% 68
Tanzania Tanzania 40 +0.251% 12
Uganda Uganda 16.1 0% 91
Ukraine Ukraine 16.8 +29.2% 85
Uruguay Uruguay 3.1 -16.2% 145
United States United States 12.9 0% 107
Uzbekistan Uzbekistan 9.5 0% 119
St. Vincent & Grenadines St. Vincent & Grenadines 22.6 +0.893% 57
Venezuela Venezuela 56.8 -0.176% 3
British Virgin Islands British Virgin Islands 10.5 +15.4% 116
U.S. Virgin Islands U.S. Virgin Islands 13.3 -7.64% 105
Vietnam Vietnam 7.6 0% 130
Vanuatu Vanuatu 4.2 0% 140
Samoa Samoa 7.8 -4.88% 128
Yemen Yemen 1.1 +37.5% 154
South Africa South Africa 9.5 +2.15% 119
Zambia Zambia 41.3 0% 10
Zimbabwe Zimbabwe 28.3 0% 41

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'ER.LND.PTLD.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'ER.LND.PTLD.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))