Surface area (sq. km)

Source: worldbank.org, 01.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Aruba Aruba 180 0% 198
Afghanistan Afghanistan 652,860 0% 40
Angola Angola 1,246,700 0% 22
Albania Albania 28,750 0% 141
Andorra Andorra 470 0% 185
United Arab Emirates United Arab Emirates 98,648 0% 110
Argentina Argentina 2,780,400 0% 8
Armenia Armenia 29,740 0% 139
American Samoa American Samoa 200 0% 197
Antigua & Barbuda Antigua & Barbuda 440 0% 188
Australia Australia 7,741,220 0% 6
Austria Austria 83,879 0% 117
Azerbaijan Azerbaijan 86,600 0% 115
Burundi Burundi 27,830 0% 143
Belgium Belgium 30,689 0% 137
Benin Benin 114,760 0% 102
Burkina Faso Burkina Faso 274,200 0% 74
Bangladesh Bangladesh 147,570 0% 93
Bulgaria Bulgaria 111,000 0% 105
Bahrain Bahrain 790 0% 178
Bahamas Bahamas 13,880 0% 156
Bosnia & Herzegovina Bosnia & Herzegovina 51,210 0% 127
Belarus Belarus 207,630 0% 85
Belize Belize 22,970 0% 148
Bermuda Bermuda 4,290 0% 168
Bolivia Bolivia 1,098,580 0% 27
Brazil Brazil 8,510,418 -0.0629% 5
Barbados Barbados 430 0% 189
Brunei Brunei 5,770 0% 166
Bhutan Bhutan 38,390 0% 134
Botswana Botswana 581,730 0% 47
Central African Republic Central African Republic 622,980 0% 44
Canada Canada 15,634,410 0% 2
Switzerland Switzerland 41,291 0% 133
Chile Chile 756,700 0% 37
China China 9,562,910 0% 4
Côte d’Ivoire Côte d’Ivoire 322,460 0% 69
Cameroon Cameroon 475,440 0% 55
Congo - Kinshasa Congo - Kinshasa 2,344,860 0% 11
Congo - Brazzaville Congo - Brazzaville 342,000 0% 65
Colombia Colombia 1,140,619 0% 25
Comoros Comoros 1,861 0% 174
Cape Verde Cape Verde 4,030 0% 169
Costa Rica Costa Rica 51,100 0% 128
Cuba Cuba 109,880 0% 106
Curaçao Curaçao 444 0% 187
Cayman Islands Cayman Islands 264 0% 195
Cyprus Cyprus 9,250 0% 164
Czechia Czechia 78,871 +0.000545% 118
Germany Germany 357,600 +0.0028% 64
Djibouti Djibouti 23,200 0% 147
Dominica Dominica 750 0% 179
Denmark Denmark 42,920 0% 131
Dominican Republic Dominican Republic 146,839 0% 95
Algeria Algeria 2,381,741 0% 10
Ecuador Ecuador 256,370 0% 77
Egypt Egypt 1,001,450 0% 29
Eritrea Eritrea 121,630 0% 99
Spain Spain 505,978 +0.00271% 53
Estonia Estonia 45,340 0% 130
Ethiopia Ethiopia 1,136,240 0% 26
Finland Finland 338,470 0% 66
Fiji Fiji 18,270 0% 152
France France 549,087 0% 49
Faroe Islands Faroe Islands 12,960 0% 158
Micronesia (Federated States of) Micronesia (Federated States of) 700 0% 181
Gabon Gabon 267,670 0% 76
United Kingdom United Kingdom 243,610 0% 79
Georgia Georgia 69,700 0% 122
Ghana Ghana 238,533 0% 81
Guinea Guinea 245,860 0% 78
Gambia Gambia 11,300 0% 161
Guinea-Bissau Guinea-Bissau 36,130 0% 135
Equatorial Guinea Equatorial Guinea 28,050 0% 142
Greece Greece 131,960 0% 97
Grenada Grenada 340 0% 192
Greenland Greenland 410,450 0% 60
Guatemala Guatemala 108,890 0% 107
Guam Guam 540 0% 184
Guyana Guyana 214,970 0% 84
Honduras Honduras 112,490 0% 103
Croatia Croatia 88,070 0% 114
Haiti Haiti 27,750 0% 144
Hungary Hungary 93,030 0% 111
Indonesia Indonesia 1,916,907 0% 14
Isle of Man Isle of Man 570 0% 183
India India 3,287,260 0% 7
Ireland Ireland 70,280 0% 121
Iran Iran 1,745,150 0% 17
Iraq Iraq 435,050 0% 59
Iceland Iceland 103,000 0% 108
Italy Italy 302,070 +0.000662% 72
Jamaica Jamaica 10,990 0% 162
Jordan Jordan 89,318 0% 113
Japan Japan 377,969 -0.00125% 63
Kazakhstan Kazakhstan 2,724,902 +0.00007% 9
Kenya Kenya 580,370 0% 48
Kyrgyzstan Kyrgyzstan 199,950 0% 86
Cambodia Cambodia 181,040 0% 89
Kiribati Kiribati 810 0% 177
St. Kitts & Nevis St. Kitts & Nevis 260 0% 196
South Korea South Korea 100,440 +0.00996% 109
Kuwait Kuwait 17,820 0% 153
Laos Laos 236,800 0% 83
Lebanon Lebanon 10,450 0% 163
Liberia Liberia 111,370 0% 104
Libya Libya 1,759,540 0% 16
St. Lucia St. Lucia 620 0% 182
Liechtenstein Liechtenstein 160 0% 199
Sri Lanka Sri Lanka 65,610 0% 123
Lesotho Lesotho 30,360 0% 138
Lithuania Lithuania 65,286 -0.00613% 124
Luxembourg Luxembourg 2,590 0% 172
Latvia Latvia 64,590 0% 125
Saint Martin (French part) Saint Martin (French part) 50 0% 203
Morocco Morocco 446,550 0% 58
Monaco Monaco 74.9 0% 201
Moldova Moldova 33,850 0% 136
Madagascar Madagascar 587,295 0% 46
Maldives Maldives 300 0% 194
Mexico Mexico 1,964,375 0% 13
Marshall Islands Marshall Islands 180 0% 198
North Macedonia North Macedonia 25,710 0% 146
Mali Mali 1,240,190 0% 23
Malta Malta 320 0% 193
Myanmar (Burma) Myanmar (Burma) 676,590 0% 39
Montenegro Montenegro 13,810 0% 157
Mongolia Mongolia 1,564,116 0.0000% 18
Northern Mariana Islands Northern Mariana Islands 460 0% 186
Mozambique Mozambique 799,380 0% 34
Mauritania Mauritania 1,030,700 0% 28
Mauritius Mauritius 2,010 +0.149% 173
Malawi Malawi 118,480 0% 101
Malaysia Malaysia 330,411 0% 68
Namibia Namibia 824,290 0% 33
New Caledonia New Caledonia 18,580 0% 151
Niger Niger 1,267,000 0% 21
Nigeria Nigeria 923,770 0% 31
Nicaragua Nicaragua 130,370 0% 98
Netherlands Netherlands 41,540 0% 132
Norway Norway 624,500 0% 43
Nepal Nepal 147,180 0% 94
Nauru Nauru 20 0% 206
New Zealand New Zealand 267,710 0% 75
Oman Oman 309,500 0% 71
Pakistan Pakistan 796,100 0% 35
Panama Panama 75,320 0% 119
Peru Peru 1,285,220 0% 19
Philippines Philippines 300,000 0% 73
Palau Palau 460 0% 186
Papua New Guinea Papua New Guinea 462,840 0% 56
Poland Poland 312,720 +0.0032% 70
Puerto Rico Puerto Rico 8,870 0% 165
North Korea North Korea 120,540 0% 100
Portugal Portugal 92,230 0% 112
Paraguay Paraguay 406,752 0% 61
French Polynesia French Polynesia 3,471 0% 170
Qatar Qatar 11,490 0% 160
Romania Romania 238,400 0% 82
Russia Russia 17,098,250 0% 1
Rwanda Rwanda 26,340 0% 145
Saudi Arabia Saudi Arabia 2,149,690 0% 12
Sudan Sudan 1,878,000 0% 15
Senegal Senegal 196,710 0% 87
Singapore Singapore 728 0% 180
Solomon Islands Solomon Islands 28,900 0% 140
Sierra Leone Sierra Leone 72,300 0% 120
El Salvador El Salvador 21,040 0% 149
San Marino San Marino 60 0% 202
Somalia Somalia 637,660 0% 42
Serbia Serbia 84,990 0% 116
South Sudan South Sudan 646,883 0% 41
São Tomé & Príncipe São Tomé & Príncipe 960 0% 175
Suriname Suriname 163,820 0% 91
Slovakia Slovakia 49,030 0% 129
Slovenia Slovenia 20,480 0% 150
Sweden Sweden 528,860 0% 50
Eswatini Eswatini 17,360 0% 154
Sint Maarten Sint Maarten 34 0% 204
Seychelles Seychelles 460 0% 186
Syria Syria 185,180 0% 88
Turks & Caicos Islands Turks & Caicos Islands 950 0% 176
Chad Chad 1,284,000 0% 20
Togo Togo 56,790 0% 126
Thailand Thailand 513,120 0% 52
Tajikistan Tajikistan 141,379 0% 96
Turkmenistan Turkmenistan 491,209 0% 54
Timor-Leste Timor-Leste 14,870 0% 155
Tonga Tonga 750 0% 179
Trinidad & Tobago Trinidad & Tobago 5,130 0% 167
Tunisia Tunisia 163,610 0% 92
Turkey Turkey 785,350 0% 36
Tuvalu Tuvalu 30 0% 205
Tanzania Tanzania 947,300 0% 30
Uganda Uganda 241,550 0% 80
Ukraine Ukraine 603,550 0% 45
Uruguay Uruguay 176,220 0% 90
United States United States 9,831,510 0% 3
Uzbekistan Uzbekistan 448,924 0% 57
St. Vincent & Grenadines St. Vincent & Grenadines 390 0% 190
Venezuela Venezuela 912,050 0% 32
British Virgin Islands British Virgin Islands 150 0% 200
U.S. Virgin Islands U.S. Virgin Islands 350 0% 191
Vietnam Vietnam 331,340 -0.00145% 67
Vanuatu Vanuatu 12,190 0% 159
Samoa Samoa 2,840 0% 171
Yemen Yemen 527,970 0% 51
South Africa South Africa 1,219,090 0% 24
Zambia Zambia 752,610 0% 38
Zimbabwe Zimbabwe 390,760 0% 62

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'AG.SRF.TOTL.K2'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'AG.SRF.TOTL.K2'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))