School enrollment, secondary, private (% of total secondary)

Source: worldbank.org, 03.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Albania Albania 10.8 +6.4% 67
Andorra Andorra 4.25 +9.79% 89
Argentina Argentina 25.7 +1.03% 26
Armenia Armenia 2.94 +2.91% 92
Australia Australia 47.5 +1.34% 10
Austria Austria 11.3 +0.543% 64
Azerbaijan Azerbaijan 5.23 -37.7% 85
Belgium Belgium 59.2 -1.01% 6
Benin Benin 20.9 +6.93% 35
Burkina Faso Burkina Faso 42.9 +2.15% 12
Bulgaria Bulgaria 3.2 -5.73% 91
Bahrain Bahrain 26 -0.594% 24
Bosnia & Herzegovina Bosnia & Herzegovina 2.82 -0.386% 94
Belarus Belarus 0.652 +10.1% 103
Belize Belize 68.5 -0.222% 3
Bolivia Bolivia 10.4 +1.76% 68
Brazil Brazil 14.4 +5.05% 49
Barbados Barbados 6.67 +1.15% 81
Canada Canada 8.78 +1.02% 73
Switzerland Switzerland 11.6 -0.856% 60
Chile Chile 62.8 +0.14% 4
China China 15.4 +1.91% 46
Côte d’Ivoire Côte d’Ivoire 57.9 +15.2% 8
Cameroon Cameroon 30.1 +5.89% 20
Colombia Colombia 20.8 +3.95% 36
Costa Rica Costa Rica 8.28 +10.1% 76
Cayman Islands Cayman Islands 38.9 +3.12% 14
Cyprus Cyprus 20.7 +2.43% 37
Czechia Czechia 12.5 +6.97% 57
Germany Germany 10 +0.396% 71
Djibouti Djibouti 13.5 +8.65% 51
Dominica Dominica 34.9 +1.51% 16
Denmark Denmark 15.5 +0.998% 45
Dominican Republic Dominican Republic 16.7 +5.84% 43
Algeria Algeria 1.36 +400% 101
Ecuador Ecuador 23.5 +4.43% 30
Spain Spain 31.2 +0.43% 19
Estonia Estonia 4.84 +10.7% 87
Finland Finland 16.2 -0.789% 44
France France 25.9 +1.53% 25
United Kingdom United Kingdom 77 +0.763% 2
Georgia Georgia 9.83 -4.88% 72
Ghana Ghana 12.5 -20.1% 56
Gibraltar Gibraltar 11.6 -4.31% 59
Greece Greece 5.42 +13.8% 84
Guatemala Guatemala 62.3 +1.46% 5
Hong Kong SAR China Hong Kong SAR China 21.4 +1.14% 33
Honduras Honduras 26 +6.34% 23
Croatia Croatia 2.57 +6.3% 95
Hungary Hungary 25.4 +5.36% 27
Ireland Ireland 0.477 +4.27% 105
Iceland Iceland 15.3 +0.988% 47
Israel Israel 12.5 +1.15% 55
Italy Italy 7.73 +7.72% 78
Jamaica Jamaica 2.29 +14.1% 96
Jordan Jordan 19.4 -0.285% 39
Japan Japan 21.9 +1.41% 32
Kiribati Kiribati 45.5 +2.29% 11
South Korea South Korea 28.4 -1.65% 22
Lebanon Lebanon 58.2 +8.18% 7
St. Lucia St. Lucia 2.04 -49.7% 97
Lithuania Lithuania 4.8 +6.44% 88
Luxembourg Luxembourg 19.2 -2.98% 40
Latvia Latvia 6.45 +16.2% 82
Macao SAR China Macao SAR China 96.6 +0.0307% 1
Morocco Morocco 11 +3.69% 65
Monaco Monaco 33.3 +0.768% 17
Moldova Moldova 2.92 +16.2% 93
Mexico Mexico 11.5 -0.96% 61
Marshall Islands Marshall Islands 23.8 +14.9% 29
North Macedonia North Macedonia 1.66 +17.9% 99
Malta Malta 36.2 -0.258% 15
Montenegro Montenegro 0.572 +18.1% 104
Nicaragua Nicaragua 21.2 -2.96% 34
Netherlands Netherlands 8.46 +27% 74
Norway Norway 7.81 +2.21% 77
New Zealand New Zealand 11 -0.263% 66
Oman Oman 11.3 -1.83% 63
Peru Peru 24.2 +10.2% 28
Poland Poland 10.3 +0.539% 69
Portugal Portugal 19.1 +2.69% 41
Paraguay Paraguay 18.7 +0.848% 42
Palestinian Territories Palestinian Territories 28.9 +0.639% 21
Qatar Qatar 48.7 +2.43% 9
Romania Romania 1.86 +4.73% 98
Russia Russia 0.92 +10.4% 102
Rwanda Rwanda 10.2 -11.9% 70
Saudi Arabia Saudi Arabia 13 +1.54% 53
Senegal Senegal 22.7 +1.3% 31
Singapore Singapore 5.69 +1.19% 83
El Salvador El Salvador 15.2 -1.51% 48
Serbia Serbia 1.41 +8.5% 100
Slovakia Slovakia 12.7 +2.06% 54
Slovenia Slovenia 3.79 +3.12% 90
Sweden Sweden 19.5 +0.909% 38
Seychelles Seychelles 13.6 +0.741% 50
Syria Syria 7.64 +2.38% 80
Turks & Caicos Islands Turks & Caicos Islands 39.8 +12.9% 13
Trinidad & Tobago Trinidad & Tobago 12.4 +25.2% 58
Turkey Turkey 7.67 +4.39% 79
Tuvalu Tuvalu 32 +16% 18
Uruguay Uruguay 11.5 +5.59% 62
United States United States 8.45 -8.38% 75
Uzbekistan Uzbekistan 0.315 -20.3% 106
British Virgin Islands British Virgin Islands 13.4 -41.4% 52
South Africa South Africa 4.92 +3.21% 86

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SE.SEC.PRIV.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SE.SEC.PRIV.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))