Prevalence of undernourishment (% of population)

Source: worldbank.org, 01.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 30.4 +3.4% 15
Angola Angola 23.2 +4.98% 23
Albania Albania 4.5 +4.65% 78
United Arab Emirates United Arab Emirates 2.7 -20.6% 90
Argentina Argentina 3.2 -3.03% 87
Armenia Armenia 2.5 0% 91
Australia Australia 2.5 0% 91
Austria Austria 2.5 0% 91
Azerbaijan Azerbaijan 2.5 0% 91
Belgium Belgium 2.5 0% 91
Benin Benin 10.3 -0.962% 52
Burkina Faso Burkina Faso 15.4 +1.99% 40
Bangladesh Bangladesh 11.9 +0.847% 49
Bulgaria Bulgaria 2.5 0% 91
Bosnia & Herzegovina Bosnia & Herzegovina 2.5 0% 91
Belarus Belarus 2.5 0% 91
Belize Belize 4.6 +6.98% 77
Bolivia Bolivia 23 +13.3% 24
Brazil Brazil 3.9 -7.14% 82
Barbados Barbados 3.5 -10.3% 85
Botswana Botswana 24.3 +0.413% 20
Central African Republic Central African Republic 23.5 +3.52% 22
Canada Canada 2.5 0% 91
Switzerland Switzerland 2.5 0% 91
Chile Chile 2.5 0% 91
China China 2.5 0% 91
Côte d’Ivoire Côte d’Ivoire 9.6 +5.49% 54
Cameroon Cameroon 5.7 -1.72% 71
Congo - Kinshasa Congo - Kinshasa 37 +3.64% 7
Congo - Brazzaville Congo - Brazzaville 26.8 -1.11% 18
Colombia Colombia 4.2 0% 79
Comoros Comoros 16.9 +7.64% 36
Cape Verde Cape Verde 12.6 0% 47
Costa Rica Costa Rica 2.5 0% 91
Cuba Cuba 2.5 0% 91
Cyprus Cyprus 2.5 0% 91
Czechia Czechia 2.5 0% 91
Germany Germany 2.5 0% 91
Djibouti Djibouti 12.9 +4.88% 45
Dominica Dominica 13.4 -4.29% 43
Denmark Denmark 2.5 0% 91
Dominican Republic Dominican Republic 4.6 -20.7% 77
Algeria Algeria 2.5 0% 91
Ecuador Ecuador 13.9 -0.714% 41
Egypt Egypt 8.5 +11.8% 57
Spain Spain 2.5 0% 91
Estonia Estonia 2.5 0% 91
Ethiopia Ethiopia 22.2 -5.53% 25
Finland Finland 2.5 0% 91
Fiji Fiji 7.8 +13% 60
France France 2.5 0% 91
Gabon Gabon 20.1 0% 29
United Kingdom United Kingdom 2.5 0% 91
Georgia Georgia 4 -23.1% 81
Ghana Ghana 6.2 +5.08% 67
Guinea Guinea 10.3 +4.04% 52
Gambia Gambia 20.5 +6.22% 27
Guinea-Bissau Guinea-Bissau 32.2 -0.617% 13
Greece Greece 2.5 0% 91
Guatemala Guatemala 12.6 -4.55% 47
Guyana Guyana 2.5 0% 91
Hong Kong SAR China Hong Kong SAR China 2.5 0% 91
Honduras Honduras 20.4 +10.9% 28
Croatia Croatia 2.5 0% 91
Haiti Haiti 50.4 +4.56% 2
Hungary Hungary 2.5 0% 91
Indonesia Indonesia 7.2 +5.88% 62
India India 13.7 -2.14% 42
Ireland Ireland 2.5 0% 91
Iran Iran 6.5 0% 66
Iraq Iraq 16.1 +0.625% 38
Iceland Iceland 2.5 0% 91
Israel Israel 2.5 0% 91
Italy Italy 2.5 0% 91
Jamaica Jamaica 7.3 -3.95% 61
Jordan Jordan 17.9 +3.47% 34
Japan Japan 3.4 +6.25% 86
Kazakhstan Kazakhstan 2.5 0% 91
Kenya Kenya 34.5 +10.9% 11
Kyrgyzstan Kyrgyzstan 6.1 +10.9% 68
Cambodia Cambodia 4.6 -8% 77
Kiribati Kiribati 3.7 -2.63% 83
South Korea South Korea 2.5 0% 91
Kuwait Kuwait 2.5 0% 91
Laos Laos 5.4 -8.47% 73
Lebanon Lebanon 9.6 -5.88% 54
Liberia Liberia 38.4 +0.261% 5
Libya Libya 11.4 -4.2% 50
Sri Lanka Sri Lanka 4.1 +7.89% 80
Lithuania Lithuania 2.5 0% 91
Luxembourg Luxembourg 2.5 0% 91
Latvia Latvia 2.5 0% 91
Macao SAR China Macao SAR China 10.7 +3.88% 51
Morocco Morocco 6.9 +7.81% 64
Moldova Moldova 2.5 0% 91
Madagascar Madagascar 39.7 +2.06% 3
Mexico Mexico 3.1 -3.13% 88
North Macedonia North Macedonia 2.5 -19.4% 91
Mali Mali 9.6 +35.2% 54
Malta Malta 2.5 0% 91
Myanmar (Burma) Myanmar (Burma) 5.3 +15.2% 74
Montenegro Montenegro 2.5 0% 91
Mongolia Mongolia 2.5 -16.7% 91
Mozambique Mozambique 24.8 -5.7% 19
Mauritania Mauritania 9.3 +12% 55
Mauritius Mauritius 5.9 -11.9% 69
Malawi Malawi 19.9 +2.58% 30
Malaysia Malaysia 2.5 0% 91
Namibia Namibia 22.2 +8.29% 25
New Caledonia New Caledonia 5.6 -1.75% 72
Niger Niger 13.3 +6.4% 44
Nigeria Nigeria 18 +5.88% 33
Nicaragua Nicaragua 19.6 +2.08% 31
Netherlands Netherlands 2.5 0% 91
Norway Norway 2.5 0% 91
Nepal Nepal 5.7 0% 71
New Zealand New Zealand 2.5 0% 91
Oman Oman 5.7 0% 71
Pakistan Pakistan 20.7 +9.52% 26
Panama Panama 5.6 +9.8% 72
Peru Peru 7 -1.41% 63
Philippines Philippines 5.9 -1.67% 69
Papua New Guinea Papua New Guinea 27.7 +2.59% 17
Poland Poland 2.5 0% 91
Portugal Portugal 2.5 0% 91
Paraguay Paraguay 4.5 +15.4% 78
French Polynesia French Polynesia 5.4 +8% 73
Romania Romania 2.5 0% 91
Russia Russia 2.5 0% 91
Rwanda Rwanda 31.4 -5.42% 14
Saudi Arabia Saudi Arabia 3 -14.3% 89
Sudan Sudan 11.4 +3.64% 50
Senegal Senegal 4.6 +2.22% 77
Solomon Islands Solomon Islands 19.4 -2.51% 32
Sierra Leone Sierra Leone 28.4 +0.709% 16
El Salvador El Salvador 6.8 -4.23% 65
Somalia Somalia 51.3 +1.18% 1
Serbia Serbia 2.5 0% 91
South Sudan South Sudan 19.6 +1.55% 31
São Tomé & Príncipe São Tomé & Príncipe 16.4 +4.46% 37
Suriname Suriname 10.1 +3.06% 53
Slovakia Slovakia 3.6 +16.1% 84
Slovenia Slovenia 2.5 0% 91
Sweden Sweden 2.5 0% 91
Eswatini Eswatini 12.4 +6.9% 48
Seychelles Seychelles 2.5 0% 91
Syria Syria 34 +5.59% 12
Chad Chad 35.1 +4.46% 10
Togo Togo 12.8 -9.22% 46
Thailand Thailand 5.6 -3.45% 72
Tajikistan Tajikistan 8.7 -8.42% 56
Turkmenistan Turkmenistan 4.1 +5.13% 80
Timor-Leste Timor-Leste 15.9 -0.625% 39
Trinidad & Tobago Trinidad & Tobago 12.6 -1.56% 47
Tunisia Tunisia 3.2 -5.88% 87
Turkey Turkey 2.5 0% 91
Tanzania Tanzania 23.8 -0.418% 21
Uganda Uganda 36.9 +0.272% 8
Ukraine Ukraine 5.8 +9.43% 70
Uruguay Uruguay 2.5 0% 91
United States United States 2.5 0% 91
Uzbekistan Uzbekistan 2.5 0% 91
St. Vincent & Grenadines St. Vincent & Grenadines 4.8 -17.2% 76
Venezuela Venezuela 17.6 -12% 35
Vietnam Vietnam 5.2 0% 75
Vanuatu Vanuatu 7.9 -2.47% 59
Samoa Samoa 5.4 +5.88% 73
Yemen Yemen 39.5 +7.05% 4
South Africa South Africa 8.1 +5.19% 58
Zambia Zambia 35.4 +2.91% 9
Zimbabwe Zimbabwe 38.1 -2.06% 6

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SN.ITK.DEFC.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SN.ITK.DEFC.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))