Portfolio equity, net inflows (BoP, current US$)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 0 -100% 73
Angola Angola 0 73
Albania Albania -4,191,680 -172% 83
Andorra Andorra 48,885,189 -204% 36
Argentina Argentina -90,116,137 -67.7% 96
Armenia Armenia 801,437 -75.3% 66
Antigua & Barbuda Antigua & Barbuda -1,503,128 -20% 81
Australia Australia -19,126,986,334 -141% 120
Austria Austria -1,189,046,396 -44.4% 107
Azerbaijan Azerbaijan -1,197,000 -126% 77
Burundi Burundi 8,605,166 +22.8% 49
Belgium Belgium 342,091,630 -171% 26
Burkina Faso Burkina Faso 34,424,750 +7.98% 39
Bangladesh Bangladesh -134,026,399 -20.8% 97
Bulgaria Bulgaria -49,420,000 -303% 94
Bahrain Bahrain 6,119,414,894 +334% 10
Bahamas Bahamas 0 73
Bosnia & Herzegovina Bosnia & Herzegovina -1,459,129 -83.1% 80
Belarus Belarus -422,337 +55% 76
Belize Belize 0 73
Bolivia Bolivia 14,063,732 -850% 45
Brazil Brazil 799,496,038 -93% 21
Bhutan Bhutan 0 73
Botswana Botswana 40,077,911 +30.1% 38
Canada Canada -35,807,204,430 +289% 123
Switzerland Switzerland 9,358,357,384 -143% 7
Chile Chile -1,416,208,506 -118% 108
China China 7,446,111,759 -80.6% 8
Cameroon Cameroon 0 73
Congo - Kinshasa Congo - Kinshasa 433,220 -34.9% 68
Colombia Colombia 19,923,914 -104% 43
Cape Verde Cape Verde 0 73
Costa Rica Costa Rica 172,006,756 +32.9% 31
Curaçao Curaçao -2,058,468 -434% 82
Cyprus Cyprus -1,005,470,548 -171% 105
Czechia Czechia 991,665,706 -822% 20
Germany Germany -16,226,619,550 +51.9% 119
Djibouti Djibouti -20,015,361 +1,778,475% 90
Dominica Dominica 0 73
Denmark Denmark -7,003,044,354 +17.3% 116
Dominican Republic Dominican Republic 0 73
Ecuador Ecuador 5,635,304 +200% 53
Egypt Egypt -252,900,000 -81.7% 101
Spain Spain -10,624,491,399 -609% 117
Estonia Estonia 201,583,310 -70.8% 30
Finland Finland -3,832,303,220 -223% 112
France France -11,874,613,153 -40.8% 118
United Kingdom United Kingdom -21,096,643,281 -44.5% 121
Georgia Georgia 2,496,093 +9.19% 59
Ghana Ghana -9,279,759 -56.6% 88
Guinea Guinea 3,120,000 +97.7% 58
Greece Greece 1,649,013,632 +2,188% 14
Grenada Grenada 0 73
Guatemala Guatemala 0 73
Guyana Guyana 90,259,580 +26.9% 33
Hong Kong SAR China Hong Kong SAR China -1,036,863,279 -120% 106
Honduras Honduras 0 73
Croatia Croatia -20,217,534 -38% 91
Hungary Hungary 277,853,894 -117% 28
Indonesia Indonesia 264,695,146 -60.5% 29
India India 21,427,093,557 -229% 5
Ireland Ireland 165,860,971,208 +63.2% 1
Iraq Iraq -6,100,000 -6,200% 84
Iceland Iceland -75,796,157 -310% 95
Israel Israel -213,800,000 -130% 100
Italy Italy 3,893,302,522 -131% 12
Jamaica Jamaica 4,091,929 -113% 57
Jordan Jordan -42,253,521 -55.8% 93
Japan Japan 24,251,033,610 -393% 4
Kazakhstan Kazakhstan 313,986,051 +149% 27
Kenya Kenya -152,219,253 -26.5% 99
Cambodia Cambodia 0 73
St. Kitts & Nevis St. Kitts & Nevis 233,719 -52.5% 70
South Korea South Korea 11,622,500,000 -328% 6
Kuwait Kuwait -374,807,343 -131% 103
Laos Laos -175,607 -230% 74
Lebanon Lebanon 76,066,304 +384% 34
St. Lucia St. Lucia 626,056 +14.5% 67
Sri Lanka Sri Lanka 8,089,240 -94.6% 50
Lesotho Lesotho 188,059 -9.87% 71
Lithuania Lithuania -8,304,808 -33.8% 86
Luxembourg Luxembourg 97,125,155,424 -388% 3
Latvia Latvia -8,724,514 -79.8% 87
Macao SAR China Macao SAR China 5,582,764 -374% 54
Morocco Morocco 139,238,056 -48.8% 32
Moldova Moldova -1,280,000 -612% 78
Maldives Maldives 6,103,595 -206% 52
Mexico Mexico -5,162,478,344 +10.8% 114
North Macedonia North Macedonia -375,669 -117% 75
Mali Mali 2,468,438 -209% 60
Malta Malta 1,329,107,826 -396% 17
Montenegro Montenegro 9,624,565 -7,524% 47
Mongolia Mongolia 12,734,931 +437% 46
Mozambique Mozambique 0 73
Mauritius Mauritius 3,008,138,824 -388% 13
Malaysia Malaysia 484,310,361 -88.4% 23
Namibia Namibia 1,829,647 -24% 63
Niger Niger 1,631,898 -83.3% 64
Nigeria Nigeria 1,588,279,928 +441% 15
Nicaragua Nicaragua 0 73
Netherlands Netherlands -26,389,946,053 +1,576% 122
Norway Norway -3,057,763,384 -180% 111
Nepal Nepal 0 73
Nauru Nauru 0 73
New Zealand New Zealand 1,135,906,722 -21.3% 18
Oman Oman -964,629,389 -435% 104
Pakistan Pakistan 69,000,000 -174% 35
Panama Panama 0 73
Peru Peru -23,612,452 -78.5% 92
Philippines Philippines 396,304,534 -181% 25
Papua New Guinea Papua New Guinea 0 73
Poland Poland 706,000,000 -157% 22
Portugal Portugal 1,112,055,200 +1,814% 19
Paraguay Paraguay 0 73
Palestinian Territories Palestinian Territories -141,871,822 +168% 98
Qatar Qatar 483,516,484 -89.9% 24
Romania Romania -276,785,586 -8.28% 102
Russia Russia -2,427,182,696 -85.3% 110
Rwanda Rwanda 857,395 +10% 65
Saudi Arabia Saudi Arabia 4,223,413,333 -60.9% 11
Senegal Senegal 8,652,160 -43.1% 48
Singapore Singapore 7,025,196,733 -18.1% 9
Solomon Islands Solomon Islands 0 73
Sierra Leone Sierra Leone 0 73
El Salvador El Salvador 0 73
Serbia Serbia 6,474,047 -324% 51
Suriname Suriname 0 73
Slovakia Slovakia 0 73
Slovenia Slovenia -7,760,162 -78.1% 85
Sweden Sweden -2,380,163,752 -88.2% 109
Sint Maarten Sint Maarten 358,135 -109% 69
Seychelles Seychelles 15,888,223 -55.1% 44
Thailand Thailand -5,657,548,885 -188% 115
Tajikistan Tajikistan -1,298,310 -698% 79
Timor-Leste Timor-Leste 0 73
Tonga Tonga 0 73
Trinidad & Tobago Trinidad & Tobago 0 73
Tunisia Tunisia 20,803,638 -233% 42
Turkey Turkey 1,387,000,000 -134% 16
Tanzania Tanzania 5,500,000 0% 55
Uganda Uganda 4,800,000 +3% 56
Ukraine Ukraine 2,000,000 -118% 61
Uruguay Uruguay 41,250,618 -61.1% 37
United States United States 133,015,000,000 +5,046% 2
Uzbekistan Uzbekistan 23,154,516 -9.46% 40
St. Vincent & Grenadines St. Vincent & Grenadines 4,770 -93.9% 72
Samoa Samoa 1,948,623 +15.4% 62
Kosovo Kosovo 0 73
South Africa South Africa -4,382,755,472 -526% 113
Zambia Zambia -18,966,705 +26,556% 89
Zimbabwe Zimbabwe 22,800,000 -75.7% 41

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'BX.PEF.TOTL.CD.WD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'BX.PEF.TOTL.CD.WD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))