Population density (people per sq. km of land area)

Source: worldbank.org, 01.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Aruba Aruba 596 -0.362% 11
Afghanistan Afghanistan 62.2 +1.45% 136
Angola Angola 28.6 +3.19% 165
Albania Albania 101 -1.21% 98
Andorra Andorra 170 +1.71% 63
United Arab Emirates United Arab Emirates 142 +5.22% 75
Argentina Argentina 16.6 +0.211% 188
Armenia Armenia 104 +0.233% 96
American Samoa American Samoa 242 -1.79% 49
Antigua & Barbuda Antigua & Barbuda 211 +0.532% 59
Australia Australia 3.38 +1.28% 208
Austria Austria 110 +0.961% 91
Azerbaijan Azerbaijan 123 +0.0395% 81
Burundi Burundi 519 +2.74% 19
Belgium Belgium 383 +0.811% 23
Benin Benin 122 +2.58% 82
Burkina Faso Burkina Faso 82.3 +2.34% 114
Bangladesh Bangladesh 1,301 +1.03% 6
Bulgaria Bulgaria 59.6 -0.649% 137
Bahrain Bahrain 1,930 +1.35% 3
Bahamas Bahamas 39.7 +0.294% 156
Bosnia & Herzegovina Bosnia & Herzegovina 62.6 -1.24% 135
Belarus Belarus 45.5 -0.821% 151
Belize Belize 17.7 +1.87% 185
Bermuda Bermuda 1,199 +0.156% 8
Bolivia Bolivia 11.1 +1.17% 195
Brazil Brazil 25.2 +0.361% 175
Barbados Barbados 657 +0.0606% 9
Brunei Brunei 86.4 +0.808% 110
Bhutan Bhutan 20.5 +0.706% 177
Botswana Botswana 4.31 +1.6% 202
Central African Republic Central African Republic 8.18 -0.275% 198
Canada Canada 4.43 +1.82% 201
Switzerland Switzerland 222 +0.833% 56
Chile Chile 26.3 +0.497% 171
China China 150 -0.0131% 68
Côte d’Ivoire Côte d’Ivoire 95.6 +2.55% 103
Cameroon Cameroon 58.5 +2.66% 139
Congo - Kinshasa Congo - Kinshasa 45.2 +3.28% 153
Congo - Brazzaville Congo - Brazzaville 17.7 +2.43% 184
Colombia Colombia 46.6 +1.07% 149
Comoros Comoros 448 +1.96% 21
Cape Verde Cape Verde 129 +0.598% 78
Costa Rica Costa Rica 99.5 +0.43% 100
Cuba Cuba 107 -0.561% 92
Curaçao Curaçao 338 -1.56% 29
Cayman Islands Cayman Islands 298 +2.12% 36
Cyprus Cyprus 144 +1.07% 74
Czechia Czechia 138 +1.6% 77
Germany Germany 240 +0.732% 50
Djibouti Djibouti 49.1 +1.41% 147
Dominica Dominica 89.1 -0.56% 108
Denmark Denmark 148 +0.791% 70
Dominican Republic Dominican Republic 233 +0.964% 53
Algeria Algeria 19.1 +1.6% 181
Ecuador Ecuador 71.8 +0.8% 128
Egypt Egypt 113 +1.5% 87
Eritrea Eritrea 28.2 +1.77% 167
Spain Spain 95.6 +0.725% 102
Estonia Estonia 31.6 +1.39% 163
Ethiopia Ethiopia 111 +2.66% 89
Finland Finland 18.3 +0.272% 183
Fiji Fiji 50.3 +0.296% 146
France France 124 +0.328% 80
Faroe Islands Faroe Islands 39.4 +1.17% 157
Micronesia (Federated States of) Micronesia (Federated States of) 160 +0.439% 67
Gabon Gabon 9.43 +2.27% 196
United Kingdom United Kingdom 279 +0.926% 38
Georgia Georgia 65 +0.105% 133
Ghana Ghana 146 +1.94% 73
Guinea Guinea 57.2 +2.51% 140
Gambia Gambia 261 +2.35% 43
Guinea-Bissau Guinea-Bissau 74.9 +2.27% 123
Equatorial Guinea Equatorial Guinea 64.3 +2.54% 134
Greece Greece 81 -1.25% 115
Grenada Grenada 344 +0.193% 27
Greenland Greenland 0.138 +0.0141% 210
Guatemala Guatemala 167 +1.42% 65
Guam Guam 306 +0.886% 33
Guyana Guyana 4.17 +0.755% 203
Honduras Honduras 93.5 +1.69% 105
Croatia Croatia 68.9 -0.602% 131
Haiti Haiti 417 +1.13% 22
Hungary Hungary 105 -0.268% 94
Indonesia Indonesia 147 +0.749% 71
Isle of Man Isle of Man 148 +0.0309% 69
India India 479 +0.793% 20
Ireland Ireland 75.7 +2% 121
Iran Iran 55.2 +1.21% 143
Iraq Iraq 102 +2.32% 97
Iceland Iceland 3.79 +2.55% 206
Italy Italy 200 -0.203% 61
Jamaica Jamaica 262 +0.0515% 40
Jordan Jordan 127 +1.72% 79
Japan Japan 343 -0.443% 28
Kazakhstan Kazakhstan 7.42 +1.47% 199
Kenya Kenya 95.3 +1.94% 104
Kyrgyzstan Kyrgyzstan 36.4 +1.81% 160
Cambodia Cambodia 97.4 +1.34% 101
Kiribati Kiribati 161 +1.63% 66
St. Kitts & Nevis St. Kitts & Nevis 180 -0.115% 62
South Korea South Korea 529 -0.187% 17
Kuwait Kuwait 258 +5.25% 44
Laos Laos 32.8 +1.42% 161
Lebanon Lebanon 562 +0.461% 15
Liberia Liberia 55.8 +2.17% 142
Libya Libya 4.11 +1.24% 204
St. Lucia St. Lucia 293 +0.145% 37
Liechtenstein Liechtenstein 247 +0.794% 47
Sri Lanka Sri Lanka 359 +0.113% 26
Lesotho Lesotho 75.3 +1.09% 122
Lithuania Lithuania 45.2 +0.838% 152
Luxembourg Luxembourg 254 +2.04% 46
Latvia Latvia 30.2 -0.271% 164
Saint Martin (French part) Saint Martin (French part) 577 -3.64% 13
Morocco Morocco 83.6 +1.01% 111
Monaco Monaco 18,681 +1.05% 1
Moldova Moldova 88 -2.32% 109
Madagascar Madagascar 52.3 +2.51% 144
Maldives Maldives 1,747 +1.54% 4
Mexico Mexico 66.2 +0.756% 132
Marshall Islands Marshall Islands 223 -3.12% 55
North Macedonia North Macedonia 72.6 -0.294% 126
Mali Mali 18.9 +3.06% 182
Malta Malta 1,660 +2.5% 5
Myanmar (Burma) Myanmar (Burma) 82.4 +0.692% 113
Montenegro Montenegro 46.4 -0.234% 150
Mongolia Mongolia 2.2 +1.48% 209
Northern Mariana Islands Northern Mariana Islands 100 -1.92% 99
Mozambique Mozambique 41.5 +2.99% 155
Mauritania Mauritania 4.73 +2.97% 200
Mauritius Mauritius 632 -0.301% 10
Malawi Malawi 218 +2.6% 58
Malaysia Malaysia 106 +1.2% 93
Namibia Namibia 3.51 +2.81% 207
New Caledonia New Caledonia 15.7 +0.669% 189
Niger Niger 20 +3.31% 178
Nigeria Nigeria 245 +2.11% 48
Nicaragua Nicaragua 55.9 +1.29% 141
Netherlands Netherlands 526 +0.958% 18
Norway Norway 15 +0.902% 192
Nepal Nepal 207 +0.816% 60
Nauru Nauru 590 +0.786% 12
New Zealand New Zealand 19.4 +0.113% 179
Oman Oman 15.3 +5.11% 191
Pakistan Pakistan 316 +1.76% 32
Panama Panama 59.3 +1.27% 138
Peru Peru 26.2 +0.964% 172
Philippines Philippines 382 +0.763% 24
Palau Palau 38.6 -0.135% 158
Papua New Guinea Papua New Guinea 22.5 +1.9% 176
Poland Poland 120 -0.429% 84
Puerto Rico Puerto Rico 363 -1.3% 25
North Korea North Korea 219 +0.367% 57
Portugal Portugal 114 +0.7% 86
Paraguay Paraguay 17.1 +1.47% 187
French Polynesia French Polynesia 80.8 +0.209% 116
Qatar Qatar 231 +6.08% 54
Romania Romania 82.8 -0.385% 112
Russia Russia 8.81 -0.352% 197
Rwanda Rwanda 553 +2.21% 16
Saudi Arabia Saudi Arabia 15 +4.52% 193
Sudan Sudan 26.4 +2.74% 170
Senegal Senegal 91.7 +2.5% 107
Singapore Singapore 7,851 +3.36% 2
Solomon Islands Solomon Islands 27.9 +2.42% 168
Sierra Leone Sierra Leone 115 +2.25% 85
El Salvador El Salvador 303 +0.392% 34
San Marino San Marino 563 -1.45% 14
Somalia Somalia 28.4 +3.07% 166
Serbia Serbia 79.3 -2.49% 118
South Sudan South Sudan 17.4 +1.43% 186
São Tomé & Príncipe São Tomé & Príncipe 236 +1.96% 52
Suriname Suriname 3.88 +0.853% 205
Slovakia Slovakia 113 -0.284% 88
Slovenia Slovenia 105 +0.19% 95
Sweden Sweden 25.7 +0.683% 173
Eswatini Eswatini 70.9 +1.02% 129
Sint Maarten Sint Maarten 1,239 +1.37% 7
Seychelles Seychelles 261 +20.8% 42
Syria Syria 121 +2.98% 83
Turks & Caicos Islands Turks & Caicos Islands 48.3 +1.34% 148
Chad Chad 14.7 +3.52% 194
Togo Togo 167 +2.38% 64
Thailand Thailand 140 +0.0111% 76
Tajikistan Tajikistan 73.4 +2.16% 124
Turkmenistan Turkmenistan 15.4 +1.95% 190
Timor-Leste Timor-Leste 92.1 +1.42% 106
Tonga Tonga 146 -0.425% 72
Trinidad & Tobago Trinidad & Tobago 266 -0.128% 39
Tunisia Tunisia 78 +0.587% 119
Turkey Turkey 110 +0.989% 90
Tuvalu Tuvalu 333 -1.98% 30
Tanzania Tanzania 73.1 +2.99% 125
Uganda Uganda 236 +3.05% 51
Ukraine Ukraine 70.8 -7.34% 130
Uruguay Uruguay 19.4 -0.17% 180
United States United States 36.5 +0.577% 159
Uzbekistan Uzbekistan 79.3 +2.03% 117
St. Vincent & Grenadines St. Vincent & Grenadines 262 -0.773% 41
Venezuela Venezuela 32 -0.0879% 162
British Virgin Islands British Virgin Islands 255 +1.35% 45
U.S. Virgin Islands U.S. Virgin Islands 301 -0.432% 35
Vietnam Vietnam 318 +0.754% 31
Vanuatu Vanuatu 25.7 +2.35% 174
Samoa Samoa 77.4 +0.693% 120
Yemen Yemen 72.4 +2.92% 127
South Africa South Africa 51.4 +1.42% 145
Zambia Zambia 27.1 +2.8% 169
Zimbabwe Zimbabwe 41.5 +1.72% 154

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'EN.POP.DNST'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'EN.POP.DNST'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))