Population ages 80 and above, male (% of male population)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 1.65 +5.3% 81
Afghanistan Afghanistan 0.209 +1.92% 207
Angola Angola 0.252 +0.827% 198
Albania Albania 3.35 +3.09% 38
Andorra Andorra 3.06 +5.26% 49
United Arab Emirates United Arab Emirates 0.141 -2.3% 212
Argentina Argentina 1.99 +3.39% 67
Armenia Armenia 1.45 -8.84% 86
American Samoa American Samoa 0.828 +6.6% 118
Antigua & Barbuda Antigua & Barbuda 1.39 +3.51% 89
Australia Australia 3.91 +3.71% 23
Austria Austria 4.9 +2.14% 12
Azerbaijan Azerbaijan 0.727 -8% 127
Burundi Burundi 0.218 +2.1% 204
Belgium Belgium 4.38 +2.35% 19
Benin Benin 0.313 +1.39% 186
Burkina Faso Burkina Faso 0.193 +2.52% 209
Bangladesh Bangladesh 0.962 +5.94% 109
Bulgaria Bulgaria 3.36 +1.6% 37
Bahrain Bahrain 0.474 +4.57% 153
Bahamas Bahamas 2.26 +3.91% 61
Bosnia & Herzegovina Bosnia & Herzegovina 2.79 -1.31% 51
Belarus Belarus 1.72 -4.16% 79
Belize Belize 0.68 +1.14% 130
Bermuda Bermuda 3.65 +3.65% 28
Bolivia Bolivia 0.749 +1.63% 123
Brazil Brazil 1.56 +4.35% 84
Barbados Barbados 2.17 +1.55% 62
Brunei Brunei 0.725 +1.4% 128
Bhutan Bhutan 0.92 -0.712% 113
Botswana Botswana 0.421 +1.43% 160
Central African Republic Central African Republic 0.119 +9.06% 215
Canada Canada 4.03 +3.51% 22
Switzerland Switzerland 4.72 +4.22% 15
Chile Chile 2.68 +3.56% 54
China China 1.92 +2.24% 68
Côte d’Ivoire Côte d’Ivoire 0.286 -0.129% 194
Cameroon Cameroon 0.283 +0.298% 195
Congo - Kinshasa Congo - Kinshasa 0.317 +1.66% 183
Congo - Brazzaville Congo - Brazzaville 0.286 -0.37% 192
Colombia Colombia 1.19 +5.64% 97
Comoros Comoros 0.556 +1.83% 142
Cape Verde Cape Verde 0.678 -0.167% 131
Costa Rica Costa Rica 2.1 +5.15% 64
Cuba Cuba 3.42 +3.49% 32
Curaçao Curaçao 1.81 +3.73% 73
Cayman Islands Cayman Islands 1.29 +5.21% 93
Cyprus Cyprus 2.72 +2.66% 53
Czechia Czechia 3.33 +6.77% 39
Germany Germany 6 +0.978% 4
Djibouti Djibouti 0.522 +3.78% 146
Dominica Dominica 2 -2.78% 66
Denmark Denmark 4.6 +6% 17
Dominican Republic Dominican Republic 0.951 +1.97% 110
Algeria Algeria 0.82 +0.338% 120
Ecuador Ecuador 1.23 +4.27% 96
Egypt Egypt 0.32 +2.91% 180
Eritrea Eritrea 0.531 +4% 144
Spain Spain 4.86 +3.1% 13
Estonia Estonia 3.38 -0.0536% 34
Ethiopia Ethiopia 0.34 +2.74% 171
Finland Finland 4.61 +3.19% 16
Fiji Fiji 0.508 +0.897% 150
France France 4.79 +2.32% 14
Faroe Islands Faroe Islands 3.8 +1.42% 26
Micronesia (Federated States of) Micronesia (Federated States of) 0.316 +5.2% 184
Gabon Gabon 0.536 +0.236% 143
United Kingdom United Kingdom 4.45 +2.59% 18
Georgia Georgia 1.75 -6.84% 76
Ghana Ghana 0.403 +0.0426% 162
Gibraltar Gibraltar 3.26 +1.54% 41
Guinea Guinea 0.386 +0.0756% 165
Gambia Gambia 0.325 +2.22% 177
Guinea-Bissau Guinea-Bissau 0.286 +0.634% 193
Equatorial Guinea Equatorial Guinea 0.338 +0.172% 174
Greece Greece 5.99 +1.57% 5
Grenada Grenada 2.12 -1.48% 63
Greenland Greenland 1.15 +8.85% 100
Guatemala Guatemala 0.631 +3.16% 138
Guam Guam 1.81 +5.53% 75
Guyana Guyana 0.756 +3.18% 121
Hong Kong SAR China Hong Kong SAR China 5.2 +1.45% 10
Honduras Honduras 0.395 +3.44% 164
Croatia Croatia 3.75 -1.38% 27
Haiti Haiti 0.425 +2.54% 159
Hungary Hungary 3.14 +3.84% 45
Indonesia Indonesia 0.748 +1.88% 124
Isle of Man Isle of Man 5.36 +4.24% 9
India India 0.894 +3.44% 114
Ireland Ireland 3.25 +3.98% 42
Iran Iran 0.985 +5.44% 107
Iraq Iraq 0.308 +3.37% 188
Iceland Iceland 3.12 +1.89% 46
Israel Israel 2.39 +0.29% 57
Italy Italy 6.13 +1.47% 3
Jamaica Jamaica 0.997 +4.16% 106
Jordan Jordan 0.518 +5.15% 147
Japan Japan 8.1 +2.7% 2
Kazakhstan Kazakhstan 0.649 -6.34% 135
Kenya Kenya 0.34 -1.93% 173
Kyrgyzstan Kyrgyzstan 0.449 -9.88% 157
Cambodia Cambodia 0.585 +2.93% 141
Kiribati Kiribati 0.343 +3.72% 169
St. Kitts & Nevis St. Kitts & Nevis 1.25 -1.82% 95
South Korea South Korea 3.19 +5.66% 44
Kuwait Kuwait 0.259 -2.32% 197
Laos Laos 0.461 -0.479% 156
Lebanon Lebanon 1.31 +1.73% 92
Liberia Liberia 0.356 +1.47% 167
Libya Libya 0.745 +0.571% 125
St. Lucia St. Lucia 1.12 +2.41% 101
Liechtenstein Liechtenstein 4.16 +9.22% 20
Sri Lanka Sri Lanka 1.42 +4.89% 87
Lesotho Lesotho 0.401 -3.8% 163
Lithuania Lithuania 3.21 -1.66% 43
Luxembourg Luxembourg 3.11 +2.18% 47
Latvia Latvia 3.39 +0.174% 33
Macao SAR China Macao SAR China 1.73 +3.7% 78
Saint Martin (French part) Saint Martin (French part) 3.36 +3.9% 35
Morocco Morocco 0.822 +3.37% 119
Monaco Monaco 14.9 -2.68% 1
Moldova Moldova 1.28 -2.67% 94
Madagascar Madagascar 0.314 -0.225% 185
Maldives Maldives 0.668 +5.02% 132
Mexico Mexico 1.42 +3.28% 88
Marshall Islands Marshall Islands 0.244 +14.4% 199
North Macedonia North Macedonia 2.29 +2.7% 60
Mali Mali 0.215 +0.521% 205
Malta Malta 3.55 +8.28% 31
Myanmar (Burma) Myanmar (Burma) 0.612 +1.55% 140
Montenegro Montenegro 2.36 -2.55% 58
Mongolia Mongolia 0.504 +0.237% 151
Northern Mariana Islands Northern Mariana Islands 0.639 +8.7% 136
Mozambique Mozambique 0.226 -0.556% 201
Mauritania Mauritania 0.378 -2.46% 166
Mauritius Mauritius 1.7 +4.29% 80
Malawi Malawi 0.318 -0.719% 182
Malaysia Malaysia 1.01 +3.83% 105
Namibia Namibia 0.299 +2.58% 191
New Caledonia New Caledonia 1.89 +3.64% 70
Niger Niger 0.189 +2.84% 211
Nigeria Nigeria 0.308 +1.55% 189
Nicaragua Nicaragua 0.649 +4.1% 134
Netherlands Netherlands 4.12 +3.79% 21
Norway Norway 3.87 +5.01% 25
Nepal Nepal 0.75 +5.42% 122
Nauru Nauru 0.132 -6.42% 213
New Zealand New Zealand 3.59 +2.92% 30
Oman Oman 0.325 -0.571% 176
Pakistan Pakistan 0.473 +1.93% 154
Panama Panama 1.57 +4.1% 83
Peru Peru 1.73 +3.24% 77
Philippines Philippines 0.324 +2.96% 178
Palau Palau 0.892 +4.56% 115
Papua New Guinea Papua New Guinea 0.313 +1.32% 187
Poland Poland 2.74 +1.43% 52
Puerto Rico Puerto Rico 5.79 +4.56% 6
North Korea North Korea 1.59 +4.96% 82
Portugal Portugal 5.55 +3.23% 8
Paraguay Paraguay 0.841 +2.79% 117
Palestinian Territories Palestinian Territories 0.409 -4.06% 161
French Polynesia French Polynesia 1.81 +8.23% 74
Qatar Qatar 0.108 +0.485% 216
Romania Romania 3.08 +0.321% 48
Russia Russia 1.83 -5.54% 72
Rwanda Rwanda 0.319 -0.762% 181
Saudi Arabia Saudi Arabia 0.342 +4.42% 170
Sudan Sudan 0.351 +3.3% 168
Senegal Senegal 0.465 -1.09% 155
Singapore Singapore 2.06 +3.54% 65
Solomon Islands Solomon Islands 0.509 -5.25% 149
Sierra Leone Sierra Leone 0.301 +1.44% 190
El Salvador El Salvador 1.17 +1.61% 98
San Marino San Marino 5.64 +4.53% 7
Somalia Somalia 0.213 +1.2% 206
Serbia Serbia 3.36 -0.561% 36
South Sudan South Sudan 0.225 +2.81% 202
São Tomé & Príncipe São Tomé & Príncipe 0.525 -2.57% 145
Suriname Suriname 0.925 +1.29% 111
Slovakia Slovakia 2.35 +4.59% 59
Slovenia Slovenia 3.91 +2.9% 24
Sweden Sweden 5 +5.98% 11
Eswatini Eswatini 0.43 +2.84% 158
Sint Maarten Sint Maarten 1.51 +7.14% 85
Seychelles Seychelles 0.923 -0.512% 112
Syria Syria 0.48 -0.409% 152
Turks & Caicos Islands Turks & Caicos Islands 1.91 -0.564% 69
Chad Chad 0.19 +1.61% 210
Togo Togo 0.241 +2.66% 200
Thailand Thailand 2.59 +3.35% 55
Tajikistan Tajikistan 0.33 -5.2% 175
Turkmenistan Turkmenistan 0.203 -11.6% 208
Timor-Leste Timor-Leste 0.733 +4.36% 126
Tonga Tonga 0.966 -1.71% 108
Trinidad & Tobago Trinidad & Tobago 1.07 +7.29% 104
Tunisia Tunisia 1.07 +1.72% 103
Turkey Turkey 1.31 +0.931% 91
Tuvalu Tuvalu 0.659 +0.201% 133
Tanzania Tanzania 0.322 +1.98% 179
Uganda Uganda 0.218 -0.852% 203
Ukraine Ukraine 2.51 -3.33% 56
Uruguay Uruguay 2.92 +0.933% 50
United States United States 3.29 +4.6% 40
Uzbekistan Uzbekistan 0.517 -2.19% 148
St. Vincent & Grenadines St. Vincent & Grenadines 1.86 -2.04% 71
Venezuela Venezuela 1.16 +4.31% 99
British Virgin Islands British Virgin Islands 1.08 +4.22% 102
U.S. Virgin Islands U.S. Virgin Islands 3.64 +3.2% 29
Vietnam Vietnam 0.855 -0.762% 116
Vanuatu Vanuatu 0.618 -3.58% 139
Samoa Samoa 0.632 +2.14% 137
Kosovo Kosovo 1.36 +5.84% 90
Yemen Yemen 0.267 +0.819% 196
South Africa South Africa 0.706 -0.758% 129
Zambia Zambia 0.125 -0.699% 214
Zimbabwe Zimbabwe 0.34 +0.214% 172

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.80UP.MA.5Y'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.80UP.MA.5Y'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))