Population ages 70-74, male (% of male population)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 4.73 +5.09% 30
Afghanistan Afghanistan 0.575 +0.926% 209
Angola Angola 0.702 +1.94% 198
Albania Albania 4.18 +3.95% 50
Andorra Andorra 3.83 +2.21% 59
United Arab Emirates United Arab Emirates 0.425 -5.69% 215
Argentina Argentina 2.89 +1.91% 84
Armenia Armenia 3.04 +4.89% 76
American Samoa American Samoa 2.09 +6.56% 107
Antigua & Barbuda Antigua & Barbuda 2.87 +3.92% 86
Australia Australia 4.27 +0.23% 46
Austria Austria 4.33 +0.666% 43
Azerbaijan Azerbaijan 2.01 +6.59% 111
Burundi Burundi 0.69 +4.42% 200
Belgium Belgium 4.73 +1.24% 31
Benin Benin 0.797 +0.732% 185
Burkina Faso Burkina Faso 0.602 +3.02% 205
Bangladesh Bangladesh 1.79 +4.97% 122
Bulgaria Bulgaria 5.07 -0.322% 19
Bahrain Bahrain 0.78 +11.9% 186
Bahamas Bahamas 2.52 +1.53% 95
Bosnia & Herzegovina Bosnia & Herzegovina 5.23 +5.41% 13
Belarus Belarus 3.66 +2.28% 63
Belize Belize 1.32 +3.53% 142
Bermuda Bermuda 5.17 +5.07% 14
Bolivia Bolivia 1.36 +2.19% 139
Brazil Brazil 2.76 +4.12% 88
Barbados Barbados 4.13 +3.62% 51
Brunei Brunei 1.74 +6.17% 123
Bhutan Bhutan 1.67 +3.42% 125
Botswana Botswana 1.07 +2.55% 155
Central African Republic Central African Republic 0.58 +3.12% 207
Canada Canada 4.78 +1.91% 26
Switzerland Switzerland 4.35 +0.355% 41
Chile Chile 3.49 +3.19% 68
China China 3.93 +5.94% 56
Côte d’Ivoire Côte d’Ivoire 0.715 +1.7% 193
Cameroon Cameroon 0.708 +1.58% 196
Congo - Kinshasa Congo - Kinshasa 0.8 +0.17% 183
Congo - Brazzaville Congo - Brazzaville 0.742 +2.24% 188
Colombia Colombia 2.49 +4.62% 96
Comoros Comoros 1.14 -0.698% 154
Cape Verde Cape Verde 1.45 +3.43% 133
Costa Rica Costa Rica 2.97 +3.75% 79
Cuba Cuba 3.9 +1.84% 57
Curaçao Curaçao 3.83 +0.384% 60
Cayman Islands Cayman Islands 2.2 +5.1% 105
Cyprus Cyprus 3.52 +1.34% 67
Czechia Czechia 5.12 +0.765% 17
Germany Germany 5.04 +1.8% 20
Djibouti Djibouti 1.23 +0.0647% 145
Dominica Dominica 3.32 +2.51% 72
Denmark Denmark 4.79 -0.661% 25
Dominican Republic Dominican Republic 1.93 +5.16% 112
Algeria Algeria 1.86 +4.55% 118
Ecuador Ecuador 2.11 +2.59% 106
Egypt Egypt 1.29 +3.57% 143
Eritrea Eritrea 0.969 -0.902% 165
Spain Spain 4.53 +0.645% 35
Estonia Estonia 4.29 +1.81% 45
Ethiopia Ethiopia 0.799 +0.622% 184
Finland Finland 5.73 -1.78% 5
Fiji Fiji 1.56 +2.06% 129
France France 5.17 -0.601% 15
Faroe Islands Faroe Islands 4.38 -1.77% 39
Micronesia (Federated States of) Micronesia (Federated States of) 1.54 +4.65% 130
Gabon Gabon 1.03 +1.31% 157
United Kingdom United Kingdom 4.43 -1.77% 38
Georgia Georgia 3.41 +2.21% 70
Ghana Ghana 0.913 +2.08% 173
Gibraltar Gibraltar 4.34 -2.6% 42
Guinea Guinea 0.83 +0.385% 180
Gambia Gambia 0.723 +4.09% 190
Guinea-Bissau Guinea-Bissau 0.729 +1.08% 189
Equatorial Guinea Equatorial Guinea 0.974 +3.04% 163
Greece Greece 5.13 +0.572% 16
Grenada Grenada 2.89 +4.7% 83
Greenland Greenland 2.98 +7.73% 78
Guatemala Guatemala 1.25 +2.85% 144
Guam Guam 3.2 +1.65% 74
Guyana Guyana 1.57 +2.35% 128
Hong Kong SAR China Hong Kong SAR China 6.21 +3.97% 3
Honduras Honduras 1.17 +2.63% 151
Croatia Croatia 5.6 +3.81% 7
Haiti Haiti 1.17 +2.37% 153
Hungary Hungary 4.81 +4.33% 24
Indonesia Indonesia 1.72 +5.12% 124
Isle of Man Isle of Man 5.54 -1.94% 9
India India 1.9 +4.59% 113
Ireland Ireland 3.96 +1.27% 54
Iran Iran 2.42 +3.39% 99
Iraq Iraq 0.877 +4.39% 177
Iceland Iceland 3.94 +1.76% 55
Israel Israel 3.11 +0.332% 75
Italy Italy 5.32 -0.578% 11
Jamaica Jamaica 1.86 +4.55% 115
Jordan Jordan 1.21 +3.81% 147
Japan Japan 6.54 -4.91% 1
Kazakhstan Kazakhstan 1.86 +5.16% 117
Kenya Kenya 0.675 -0.294% 201
Kyrgyzstan Kyrgyzstan 1.37 +5.21% 138
Cambodia Cambodia 1.4 +2.46% 135
Kiribati Kiribati 0.924 +0.989% 172
St. Kitts & Nevis St. Kitts & Nevis 2.96 +8.6% 80
South Korea South Korea 4.21 +4.33% 49
Kuwait Kuwait 0.69 +8.36% 199
Laos Laos 1.21 +3.66% 146
Lebanon Lebanon 2.68 +1.12% 90
Liberia Liberia 0.853 +1.34% 178
Libya Libya 1.2 -1.86% 148
St. Lucia St. Lucia 2.24 +3.29% 104
Liechtenstein Liechtenstein 5.01 -0.872% 21
Sri Lanka Sri Lanka 3.03 +1.76% 77
Lesotho Lesotho 0.718 +0.823% 192
Lithuania Lithuania 3.73 +0.745% 61
Luxembourg Luxembourg 3.62 +2.14% 66
Latvia Latvia 4.12 +0.828% 52
Macao SAR China Macao SAR China 4.27 +5.22% 47
Saint Martin (French part) Saint Martin (French part) 4.67 +8.88% 33
Morocco Morocco 2.25 +5.8% 103
Monaco Monaco 6.46 -0.773% 2
Moldova Moldova 3.98 +0.567% 53
Madagascar Madagascar 0.966 +3.09% 167
Maldives Maldives 0.905 +7.95% 174
Mexico Mexico 2.02 +3.2% 110
Marshall Islands Marshall Islands 1.42 +8.01% 134
North Macedonia North Macedonia 4.75 +4.88% 27
Mali Mali 0.644 -0.452% 204
Malta Malta 4.74 -1.85% 28
Myanmar (Burma) Myanmar (Burma) 1.86 +4.45% 116
Montenegro Montenegro 4.49 +4.92% 37
Mongolia Mongolia 0.965 +6.41% 168
Northern Mariana Islands Northern Mariana Islands 2.57 +11.1% 93
Mozambique Mozambique 0.563 -2.1% 210
Mauritania Mauritania 0.843 +0.193% 179
Mauritius Mauritius 3.62 +4.78% 65
Malawi Malawi 0.582 -1.05% 206
Malaysia Malaysia 2.05 +3.99% 108
Namibia Namibia 0.772 +1.53% 187
New Caledonia New Caledonia 2.89 +1.15% 85
Niger Niger 0.72 +1.44% 191
Nigeria Nigeria 0.817 +1.37% 181
Nicaragua Nicaragua 1.35 +2.38% 140
Netherlands Netherlands 4.99 -0.527% 22
Norway Norway 4.52 -0.403% 36
Nepal Nepal 1.83 +1.87% 120
Nauru Nauru 0.666 +1.95% 202
New Zealand New Zealand 4.23 +0.687% 48
Oman Oman 0.552 -2.6% 212
Pakistan Pakistan 1.06 +2.83% 156
Panama Panama 2.28 +3.59% 102
Peru Peru 2.29 +2.17% 101
Philippines Philippines 1.38 +4.48% 137
Palau Palau 2.83 +5.75% 87
Papua New Guinea Papua New Guinea 0.967 +2.82% 166
Poland Poland 4.98 +3.64% 23
Puerto Rico Puerto Rico 5.57 -0.136% 8
North Korea North Korea 2.43 +0.877% 98
Portugal Portugal 5.64 -0.0633% 6
Paraguay Paraguay 1.6 +1.58% 127
Palestinian Territories Palestinian Territories 0.985 -0.193% 161
French Polynesia French Polynesia 2.93 +7.57% 81
Qatar Qatar 0.328 +6.88% 216
Romania Romania 4.73 +1.51% 29
Russia Russia 3.65 +3.15% 64
Rwanda Rwanda 0.948 +1.48% 171
Saudi Arabia Saudi Arabia 0.662 +0.164% 203
Sudan Sudan 1.01 +2.78% 158
Senegal Senegal 0.995 +1.94% 160
Singapore Singapore 3.41 +3.84% 69
Solomon Islands Solomon Islands 1 +1.91% 159
Sierra Leone Sierra Leone 0.811 +2% 182
El Salvador El Salvador 1.84 +0.334% 119
San Marino San Marino 5.09 +1.46% 18
Somalia Somalia 0.703 +2.06% 197
Serbia Serbia 6.19 +2.65% 4
South Sudan South Sudan 0.714 +3.68% 194
São Tomé & Príncipe São Tomé & Príncipe 0.96 +1.92% 169
Suriname Suriname 1.81 +4.12% 121
Slovakia Slovakia 4.6 +4.2% 34
Slovenia Slovenia 5.46 +3.7% 10
Sweden Sweden 4.69 -1.83% 32
Eswatini Eswatini 0.985 +3.24% 162
Sint Maarten Sint Maarten 4.32 +1.77% 44
Seychelles Seychelles 1.87 +3.88% 114
Syria Syria 1.18 +0.968% 149
Turks & Caicos Islands Turks & Caicos Islands 2.72 +4.25% 89
Chad Chad 0.552 +2.29% 211
Togo Togo 0.902 +1.77% 175
Thailand Thailand 3.67 +4.35% 62
Tajikistan Tajikistan 0.958 +7.14% 170
Turkmenistan Turkmenistan 0.891 +9.9% 176
Timor-Leste Timor-Leste 1.34 -7.21% 141
Tonga Tonga 1.63 +2.56% 126
Trinidad & Tobago Trinidad & Tobago 3.34 +5.33% 71
Tunisia Tunisia 2.57 +8.48% 94
Turkey Turkey 2.68 +6.42% 91
Tuvalu Tuvalu 1.18 +0.873% 150
Tanzania Tanzania 0.709 -1.92% 195
Uganda Uganda 0.506 +0.93% 213
Ukraine Ukraine 3.88 +2.22% 58
Uruguay Uruguay 3.31 +2.58% 73
United States United States 4.35 +2.59% 40
Uzbekistan Uzbekistan 1.39 +6.05% 136
St. Vincent & Grenadines St. Vincent & Grenadines 2.91 +3.29% 82
Venezuela Venezuela 2.33 +4.57% 100
British Virgin Islands British Virgin Islands 2.57 +3.46% 92
U.S. Virgin Islands U.S. Virgin Islands 5.29 -1.16% 12
Vietnam Vietnam 2.04 +7.02% 109
Vanuatu Vanuatu 1.17 +0.265% 152
Samoa Samoa 1.5 +5.2% 132
Kosovo Kosovo 2.44 +5.71% 97
Yemen Yemen 0.579 -0.193% 208
South Africa South Africa 1.53 +4.81% 131
Zambia Zambia 0.447 +4.36% 214
Zimbabwe Zimbabwe 0.972 +0.72% 164

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.7074.MA.5Y'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.7074.MA.5Y'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))