Population ages 65 and above, total

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 18,357 +4.46% 184
Afghanistan Afghanistan 1,023,954 +3.89% 77
Angola Angola 1,080,664 +4.59% 74
Albania Albania 459,388 +2.62% 112
Andorra Andorra 13,066 +4.8% 190
United Arab Emirates United Arab Emirates 192,192 +8.12% 137
Argentina Argentina 5,673,637 +2.1% 27
Armenia Armenia 415,674 +6.14% 117
American Samoa American Samoa 3,762 +4.85% 212
Antigua & Barbuda Antigua & Barbuda 11,051 +5.37% 193
Australia Australia 4,823,417 +4.1% 29
Austria Austria 1,891,355 +2.72% 53
Azerbaijan Azerbaijan 872,932 +7.32% 85
Burundi Burundi 355,663 +3.5% 128
Belgium Belgium 2,441,651 +2.82% 46
Benin Benin 450,969 +3.5% 114
Burkina Faso Burkina Faso 624,460 +3.48% 96
Bangladesh Bangladesh 11,278,886 +4.07% 12
Bulgaria Bulgaria 1,419,715 +0.872% 64
Bahrain Bahrain 61,218 +6.7% 162
Bahamas Bahamas 47,254 +2.89% 170
Bosnia & Herzegovina Bosnia & Herzegovina 703,421 +2.04% 91
Belarus Belarus 1,613,613 +3.04% 60
Belize Belize 20,953 +5.28% 182
Bermuda Bermuda 14,054 +3.87% 188
Bolivia Bolivia 700,294 +3.04% 93
Brazil Brazil 23,424,113 +4.33% 6
Barbados Barbados 46,749 +2.89% 171
Brunei Brunei 31,779 +6.34% 176
Bhutan Bhutan 51,403 +2.64% 167
Botswana Botswana 101,750 +3.34% 154
Central African Republic Central African Republic 114,667 +6.21% 149
Canada Canada 8,174,974 +5.36% 20
Switzerland Switzerland 1,808,542 +3.76% 55
Chile Chile 2,793,767 +3.78% 40
China China 206,629,972 +2.31% 1
Côte d’Ivoire Côte d’Ivoire 833,154 +4.09% 87
Cameroon Cameroon 813,950 +3.39% 89
Congo - Kinshasa Congo - Kinshasa 3,360,877 +3.54% 35
Congo - Brazzaville Congo - Brazzaville 189,077 +4.92% 138
Colombia Colombia 5,171,459 +5.43% 28
Comoros Comoros 38,757 +1.89% 172
Cape Verde Cape Verde 35,997 +4.74% 173
Costa Rica Costa Rica 627,139 +4.82% 95
Cuba Cuba 1,819,249 +1.93% 54
Curaçao Curaçao 26,163 +3.14% 178
Cayman Islands Cayman Islands 6,699 +7.39% 203
Cyprus Cyprus 198,529 +3.05% 136
Czechia Czechia 2,268,429 +1.63% 47
Germany Germany 19,370,855 +1.31% 8
Djibouti Djibouti 56,692 +3.83% 164
Dominica Dominica 8,578 +1.2% 197
Denmark Denmark 1,247,163 +1.8% 68
Dominican Republic Dominican Republic 900,432 +4.82% 82
Algeria Algeria 3,081,417 +4.67% 39
Ecuador Ecuador 1,513,224 +3.99% 62
Egypt Egypt 5,962,442 +4.75% 26
Eritrea Eritrea 148,597 +3.15% 146
Spain Spain 10,320,486 +3.35% 16
Estonia Estonia 292,196 +1.96% 132
Ethiopia Ethiopia 4,265,510 +4.52% 31
Finland Finland 1,347,138 +2.32% 65
Fiji Fiji 60,250 +2.78% 163
France France 15,174,093 +2.17% 9
Faroe Islands Faroe Islands 9,706 +0.58% 195
Micronesia (Federated States of) Micronesia (Federated States of) 6,732 +4.29% 202
Gabon Gabon 103,654 +3.21% 153
United Kingdom United Kingdom 13,498,909 +2.45% 11
Georgia Georgia 574,505 +0.947% 101
Ghana Ghana 1,276,683 +4.04% 66
Gibraltar Gibraltar 6,928 +3.08% 201
Guinea Guinea 509,795 +2.84% 108
Gambia Gambia 84,959 +5.75% 157
Guinea-Bissau Guinea-Bissau 70,264 +3.83% 159
Equatorial Guinea Equatorial Guinea 69,794 +4.26% 160
Greece Greece 2,487,055 +1.78% 45
Grenada Grenada 14,345 +3.22% 186
Greenland Greenland 6,143 +6.76% 204
Guatemala Guatemala 892,586 +4.01% 84
Guam Guam 21,143 +4.8% 181
Guyana Guyana 55,973 +4.54% 165
Hong Kong SAR China Hong Kong SAR China 1,705,499 +4.55% 57
Honduras Honduras 478,249 +4.66% 110
Croatia Croatia 896,509 +1.81% 83
Haiti Haiti 553,925 +3.07% 104
Hungary Hungary 2,007,435 +0.522% 51
Indonesia Indonesia 20,662,305 +4.25% 7
Isle of Man Isle of Man 19,485 +1.93% 183
India India 103,691,375 +4.17% 2
Ireland Ireland 855,035 +3.65% 86
Iran Iran 7,544,278 +5.18% 21
Iraq Iraq 1,572,053 +2.68% 61
Iceland Iceland 63,300 +4.85% 161
Israel Israel 1,252,056 +2.39% 67
Italy Italy 14,525,176 +1.66% 10
Jamaica Jamaica 233,085 +4.4% 134
Jordan Jordan 522,555 +5.69% 106
Japan Japan 36,920,821 +0.303% 4
Kazakhstan Kazakhstan 1,781,923 +5.5% 56
Kenya Kenya 1,673,896 +3.83% 58
Kyrgyzstan Kyrgyzstan 410,499 +6.54% 119
Cambodia Cambodia 1,087,204 +4.67% 73
Kiribati Kiribati 5,699 +4.42% 206
St. Kitts & Nevis St. Kitts & Nevis 5,258 +5.12% 207
South Korea South Korea 9,974,248 +5.2% 17
Kuwait Kuwait 154,430 +7.76% 144
Laos Laos 362,523 +4.28% 126
Lebanon Lebanon 588,643 +3.78% 98
Liberia Liberia 185,504 +3.04% 139
Libya Libya 370,468 +3.95% 124
St. Lucia St. Lucia 17,286 +3.7% 185
Liechtenstein Liechtenstein 8,331 +3.68% 198
Sri Lanka Sri Lanka 2,652,699 +2.55% 43
Lesotho Lesotho 90,141 +1.9% 156
Lithuania Lithuania 582,419 +2.15% 100
Luxembourg Luxembourg 104,886 +4.19% 152
Latvia Latvia 404,817 +1.08% 121
Macao SAR China Macao SAR China 98,024 +7.13% 155
Saint Martin (French part) Saint Martin (French part) 4,809 +1.58% 209
Morocco Morocco 3,099,294 +5.02% 38
Monaco Monaco 13,971 -1.36% 189
Moldova Moldova 387,338 +0.928% 122
Madagascar Madagascar 1,088,456 +4.62% 72
Maldives Maldives 24,491 +7.16% 179
Mexico Mexico 10,794,162 +4.17% 14
Marshall Islands Marshall Islands 1,742 +2.41% 214
North Macedonia North Macedonia 323,036 +0.981% 130
Mali Mali 583,574 +2.07% 99
Malta Malta 116,089 +6.07% 148
Myanmar (Burma) Myanmar (Burma) 3,980,919 +3.73% 32
Montenegro Montenegro 111,242 +2.14% 151
Mongolia Mongolia 181,091 +6.96% 140
Northern Mariana Islands Northern Mariana Islands 4,318 +9.51% 210
Mozambique Mozambique 953,670 +2.48% 80
Mauritania Mauritania 166,889 +3.34% 143
Mauritius Mauritius 170,360 +4.39% 141
Malawi Malawi 560,032 +2.35% 102
Malaysia Malaysia 2,751,400 +5.12% 41
Namibia Namibia 111,295 +5.18% 150
New Caledonia New Caledonia 33,437 +4.01% 174
Niger Niger 701,324 +4.27% 92
Nigeria Nigeria 7,093,611 +2.8% 24
Nicaragua Nicaragua 382,711 +4.26% 123
Netherlands Netherlands 3,688,113 +2.35% 34
Norway Norway 1,046,765 +2.32% 75
Nepal Nepal 1,928,344 +2.1% 52
Nauru Nauru 341 +7.23% 216
New Zealand New Zealand 917,995 +4.19% 81
Oman Oman 139,649 +3.96% 147
Pakistan Pakistan 10,755,901 +3.56% 15
Panama Panama 422,347 +4.59% 116
Peru Peru 3,157,665 +3.75% 37
Philippines Philippines 6,362,058 +5.23% 25
Palau Palau 2,007 +4.37% 213
Papua New Guinea Papua New Guinea 366,435 +5.33% 125
Poland Poland 7,363,362 +2.61% 22
Puerto Rico Puerto Rico 791,812 +1.94% 90
North Korea North Korea 3,285,819 +3.4% 36
Portugal Portugal 2,625,181 +2.93% 44
Paraguay Paraguay 453,004 +3.92% 113
Palestinian Territories Palestinian Territories 202,984 +3.34% 135
French Polynesia French Polynesia 31,912 +5.84% 175
Qatar Qatar 47,892 +14.7% 169
Romania Romania 3,810,245 +1.21% 33
Russia Russia 24,655,492 +3.24% 5
Rwanda Rwanda 559,723 +4.95% 103
Saudi Arabia Saudi Arabia 1,041,656 +9.62% 76
Sudan Sudan 1,665,680 +3.64% 59
Senegal Senegal 669,350 +3.13% 94
Singapore Singapore 824,407 +6.38% 88
Solomon Islands Solomon Islands 29,809 +2.75% 177
Sierra Leone Sierra Leone 280,234 +3.29% 133
El Salvador El Salvador 516,475 +2.31% 107
San Marino San Marino 7,614 +3.7% 199
Somalia Somalia 492,638 +4.63% 109
Serbia Serbia 1,494,375 +1% 63
South Sudan South Sudan 357,308 +6.84% 127
São Tomé & Príncipe São Tomé & Príncipe 9,186 +2.89% 196
Suriname Suriname 50,115 +4.56% 168
Slovakia Slovakia 1,005,111 +2.61% 79
Slovenia Slovenia 462,951 +2.34% 111
Sweden Sweden 2,192,873 +1.34% 48
Eswatini Eswatini 52,969 +3.8% 166
Sint Maarten Sint Maarten 6,044 +5.13% 205
Seychelles Seychelles 10,362 +3.85% 194
Syria Syria 1,169,911 +5.79% 70
Turks & Caicos Islands Turks & Caicos Islands 5,236 +3.99% 208
Chad Chad 426,391 +6.38% 115
Togo Togo 305,767 +3.87% 131
Thailand Thailand 11,010,180 +4.33% 13
Tajikistan Tajikistan 407,927 +7.57% 120
Turkmenistan Turkmenistan 339,519 +7.91% 129
Timor-Leste Timor-Leste 73,921 +0.11% 158
Tonga Tonga 6,996 +1.3% 200
Trinidad & Tobago Trinidad & Tobago 169,377 +4.49% 142
Tunisia Tunisia 1,169,962 +4.62% 69
Turkey Turkey 8,794,894 +3.06% 19
Tuvalu Tuvalu 643 +4.38% 215
Tanzania Tanzania 2,087,657 +2.98% 50
Uganda Uganda 1,094,613 +4.61% 71
Ukraine Ukraine 7,179,225 +2.53% 23
Uruguay Uruguay 543,385 +1.42% 105
United States United States 60,977,581 +3.86% 3
Uzbekistan Uzbekistan 2,132,447 +5.03% 49
St. Vincent & Grenadines St. Vincent & Grenadines 11,964 +2.12% 192
Venezuela Venezuela 2,749,433 +4.09% 42
British Virgin Islands British Virgin Islands 3,798 +5.85% 211
U.S. Virgin Islands U.S. Virgin Islands 23,683 +1.48% 180
Vietnam Vietnam 9,136,541 +5.61% 18
Vanuatu Vanuatu 14,080 +4.17% 187
Samoa Samoa 12,821 +3.71% 191
Kosovo Kosovo 153,864 -5.18% 145
Yemen Yemen 1,023,928 +3.66% 78
South Africa South Africa 4,282,432 +3.98% 30
Zambia Zambia 414,950 +5.45% 118
Zimbabwe Zimbabwe 599,113 +1.33% 97

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.65UP.TO'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.65UP.TO'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))