Population ages 65 and above, male (% of male population)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 15.2 +3.88% 49
Afghanistan Afghanistan 2.02 +0.861% 209
Angola Angola 2.52 +1.48% 196
Albania Albania 16 +3.67% 43
Andorra Andorra 15.2 +3.63% 48
United Arab Emirates United Arab Emirates 1.54 +5.35% 215
Argentina Argentina 10.6 +2.1% 83
Armenia Armenia 10.8 +3.59% 81
American Samoa American Samoa 7.45 +6.25% 108
Antigua & Barbuda Antigua & Barbuda 10.1 +4.84% 89
Australia Australia 16.7 +1.94% 38
Austria Austria 18.4 +2.55% 25
Azerbaijan Azerbaijan 7.22 +7.17% 109
Burundi Burundi 2.22 +1.14% 202
Belgium Belgium 18.7 +2.39% 23
Benin Benin 2.8 +1.29% 185
Burkina Faso Burkina Faso 2.16 +1.4% 206
Bangladesh Bangladesh 6.47 +3.1% 119
Bulgaria Bulgaria 18.1 +0.99% 27
Bahrain Bahrain 3.27 +6.16% 172
Bahamas Bahamas 10.4 +2.15% 86
Bosnia & Herzegovina Bosnia & Herzegovina 17.9 +3.35% 31
Belarus Belarus 12.9 +4.39% 66
Belize Belize 4.78 +3.19% 139
Bermuda Bermuda 19 +4.01% 21
Bolivia Bolivia 5.02 +1.85% 134
Brazil Brazil 9.87 +4.01% 90
Barbados Barbados 14.6 +2.7% 56
Brunei Brunei 6.05 +5.3% 124
Bhutan Bhutan 6.02 +1.73% 125
Botswana Botswana 3.58 +1.97% 160
Central African Republic Central African Republic 1.89 +1.12% 211
Canada Canada 18.4 +2.43% 24
Switzerland Switzerland 18.3 +2.44% 26
Chile Chile 13 +3.49% 63
China China 13 +2.18% 64
Côte d’Ivoire Côte d’Ivoire 2.54 +1.46% 194
Cameroon Cameroon 2.51 +0.799% 197
Congo - Kinshasa Congo - Kinshasa 2.81 +0.257% 184
Congo - Brazzaville Congo - Brazzaville 2.72 +2.56% 190
Colombia Colombia 8.78 +4.43% 97
Comoros Comoros 4.08 -0.373% 152
Cape Verde Cape Verde 5.29 +5.49% 132
Costa Rica Costa Rica 11.2 +4.39% 77
Cuba Cuba 14.9 +2.15% 52
Curaçao Curaçao 13.2 +2.26% 62
Cayman Islands Cayman Islands 8.26 +5.21% 103
Cyprus Cyprus 13.4 +2.28% 61
Czechia Czechia 17.9 +1.62% 30
Germany Germany 20.8 +2.03% 11
Djibouti Djibouti 4.37 +2.43% 146
Dominica Dominica 12.3 +2.03% 69
Denmark Denmark 19.4 +1.31% 17
Dominican Republic Dominican Republic 6.9 +4.01% 114
Algeria Algeria 6.23 +3.39% 123
Ecuador Ecuador 7.52 +3.16% 107
Egypt Egypt 4.37 +3.24% 147
Eritrea Eritrea 3.61 +1.05% 159
Spain Spain 18.8 +2.61% 22
Estonia Estonia 15.9 +2.49% 45
Ethiopia Ethiopia 2.87 +1.67% 182
Finland Finland 21.4 +1.47% 8
Fiji Fiji 5.59 +2.3% 129
France France 19.8 +2.04% 14
Faroe Islands Faroe Islands 16.7 -0.0431% 37
Micronesia (Federated States of) Micronesia (Federated States of) 4.97 +3.09% 135
Gabon Gabon 3.72 +1.14% 158
United Kingdom United Kingdom 18.1 +1.37% 28
Georgia Georgia 11.8 +2.12% 72
Ghana Ghana 3.32 +2.43% 170
Gibraltar Gibraltar 16.4 +0.798% 39
Guinea Guinea 2.94 +0.492% 180
Gambia Gambia 2.75 +2.91% 189
Guinea-Bissau Guinea-Bissau 2.49 +0.728% 198
Equatorial Guinea Equatorial Guinea 3.31 +2.46% 171
Greece Greece 21.4 +1.83% 9
Grenada Grenada 11.1 +3.24% 78
Greenland Greenland 11.2 +7.11% 75
Guatemala Guatemala 4.39 +2.01% 145
Guam Guam 11.5 +4.08% 73
Guyana Guyana 5.85 +3.68% 127
Hong Kong SAR China Hong Kong SAR China 23.6 +4.64% 3
Honduras Honduras 3.9 +2.49% 157
Croatia Croatia 19.7 +1.92% 15
Haiti Haiti 4.06 +1.86% 153
Hungary Hungary 16.8 +0.925% 35
Indonesia Indonesia 6.28 +3.66% 120
Isle of Man Isle of Man 22 +1.98% 6
India India 6.59 +3.41% 116
Ireland Ireland 15.1 +2.24% 50
Iran Iran 7.87 +4.12% 104
Iraq Iraq 2.78 +0.513% 188
Iceland Iceland 14.8 +1.96% 54
Israel Israel 11.3 +1.13% 74
Italy Italy 22.2 +1.9% 5
Jamaica Jamaica 7.19 +3.91% 112
Jordan Jordan 4.26 +4.58% 148
Japan Japan 26.8 +0.799% 2
Kazakhstan Kazakhstan 6.49 +5.16% 118
Kenya Kenya 2.59 +2.14% 193
Kyrgyzstan Kyrgyzstan 4.72 +4.49% 140
Cambodia Cambodia 4.9 +3.76% 136
Kiribati Kiribati 3.38 +3.6% 169
St. Kitts & Nevis St. Kitts & Nevis 10.4 +3.96% 85
South Korea South Korea 16.9 +5.63% 34
Kuwait Kuwait 2.71 +5.93% 191
Laos Laos 4.25 +2.75% 149
Lebanon Lebanon 9.15 +2.94% 94
Liberia Liberia 3.04 +0.651% 176
Libya Libya 4.53 +3.08% 143
St. Lucia St. Lucia 8.37 +3.4% 102
Liechtenstein Liechtenstein 19.5 +2.71% 16
Sri Lanka Sri Lanka 10.4 +2.95% 87
Lesotho Lesotho 2.79 +0.82% 187
Lithuania Lithuania 14.7 +2.24% 55
Luxembourg Luxembourg 14.1 +3.02% 58
Latvia Latvia 16 +2.58% 44
Macao SAR China Macao SAR China 14.8 +5.78% 53
Saint Martin (French part) Saint Martin (French part) 17.1 +6.66% 33
Morocco Morocco 7.62 +3.92% 105
Monaco Monaco 35.1 -0.671% 1
Moldova Moldova 12.4 +4% 68
Madagascar Madagascar 3.16 +2.19% 175
Maldives Maldives 3.92 +6.61% 155
Mexico Mexico 7.59 +3.15% 106
Marshall Islands Marshall Islands 4.49 +5.54% 144
North Macedonia North Macedonia 15.9 +3.34% 46
Mali Mali 2.16 -0.795% 205
Malta Malta 18 +2.11% 29
Myanmar (Burma) Myanmar (Burma) 6.27 +3.12% 121
Montenegro Montenegro 15 +2.35% 51
Mongolia Mongolia 4.01 +5.41% 154
Northern Mariana Islands Northern Mariana Islands 9.44 +11.8% 92
Mozambique Mozambique 1.87 -2.42% 212
Mauritania Mauritania 3 -0.216% 179
Mauritius Mauritius 12.3 +4.61% 70
Malawi Malawi 2.18 -0.472% 203
Malaysia Malaysia 7.1 +3.84% 113
Namibia Namibia 2.79 +2.86% 186
New Caledonia New Caledonia 10.8 +3.01% 82
Niger Niger 2.38 +1.4% 200
Nigeria Nigeria 2.86 +0.717% 183
Nicaragua Nicaragua 4.67 +3% 141
Netherlands Netherlands 19.2 +1.89% 19
Norway Norway 17.6 +1.66% 32
Nepal Nepal 6.23 +2.51% 122
Nauru Nauru 2.1 +3.06% 207
New Zealand New Zealand 16.2 +2.31% 42
Oman Oman 2.05 -0.82% 208
Pakistan Pakistan 3.91 +1.71% 156
Panama Panama 8.45 +3.34% 100
Peru Peru 8.58 +2.55% 99
Philippines Philippines 4.58 +4.88% 142
Palau Palau 9.8 +5.15% 91
Papua New Guinea Papua New Guinea 3.46 +3.04% 165
Poland Poland 16.8 +3.4% 36
Puerto Rico Puerto Rico 22.4 +1.56% 4
North Korea North Korea 10.6 +4.19% 84
Portugal Portugal 22 +1.77% 7
Paraguay Paraguay 5.78 +2.45% 128
Palestinian Territories Palestinian Territories 3.46 -0.547% 166
French Polynesia French Polynesia 10.9 +5.66% 79
Qatar Qatar 1.42 +8.42% 216
Romania Romania 16.4 +1.1% 40
Russia Russia 12.6 +3.93% 67
Rwanda Rwanda 3.26 +2.9% 173
Saudi Arabia Saudi Arabia 2.69 +4.99% 192
Sudan Sudan 3.42 +1.69% 168
Senegal Senegal 3.46 +0.0252% 164
Singapore Singapore 12.2 +4.72% 71
Solomon Islands Solomon Islands 3.5 +0.256% 161
Sierra Leone Sierra Leone 2.88 +1.08% 181
El Salvador El Salvador 6.68 +1.27% 115
San Marino San Marino 21.1 +3.93% 10
Somalia Somalia 2.31 +1.09% 201
Serbia Serbia 19.8 +1.12% 13
South Sudan South Sudan 2.53 +2.85% 195
São Tomé & Príncipe São Tomé & Príncipe 3.48 +0.697% 162
Suriname Suriname 6.5 +4.14% 117
Slovakia Slovakia 15.4 +3.15% 47
Slovenia Slovenia 19.1 +2.52% 20
Sweden Sweden 19.3 +1.13% 18
Eswatini Eswatini 3.45 +2.15% 167
Sint Maarten Sint Maarten 14.2 +2.93% 57
Seychelles Seychelles 7.21 +3.46% 111
Syria Syria 4.19 +1.1% 150
Turks & Caicos Islands Turks & Caicos Islands 10.1 +3.67% 88
Chad Chad 1.91 +1.59% 210
Togo Togo 3.01 +1.64% 178
Thailand Thailand 13.7 +4.41% 60
Tajikistan Tajikistan 3.46 +5.55% 163
Turkmenistan Turkmenistan 3.25 +8.37% 174
Timor-Leste Timor-Leste 4.84 -1.1% 137
Tonga Tonga 5.99 +1.23% 126
Trinidad & Tobago Trinidad & Tobago 10.8 +4.48% 80
Tunisia Tunisia 8.73 +4.08% 98
Turkey Turkey 9.07 +2.83% 95
Tuvalu Tuvalu 5.05 +4.47% 133
Tanzania Tanzania 2.45 -1.08% 199
Uganda Uganda 1.78 +1.77% 213
Ukraine Ukraine 13.9 +3.19% 59
Uruguay Uruguay 13 +1.71% 65
United States United States 16.4 +3.08% 41
Uzbekistan Uzbekistan 4.83 +3.39% 138
St. Vincent & Grenadines St. Vincent & Grenadines 11.2 +2.75% 76
Venezuela Venezuela 8.41 +3.8% 101
British Virgin Islands British Virgin Islands 9.16 +4.59% 93
U.S. Virgin Islands U.S. Virgin Islands 20.1 +1.01% 12
Vietnam Vietnam 7.21 +5.13% 110
Vanuatu Vanuatu 4.19 -0.0903% 151
Samoa Samoa 5.37 +3.29% 130
Kosovo Kosovo 8.88 +4.46% 96
Yemen Yemen 2.17 +0.84% 204
South Africa South Africa 5.31 +2.92% 131
Zambia Zambia 1.58 +3.01% 214
Zimbabwe Zimbabwe 3.02 -1.38% 177

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.65UP.MA.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.65UP.MA.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))