Population ages 45-49, female (% of female population)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 7.05 -0.817% 33
Afghanistan Afghanistan 3.34 +0.422% 211
Angola Angola 3.61 +0.514% 201
Albania Albania 5.77 -1.48% 123
Andorra Andorra 8.99 -2.46% 2
United Arab Emirates United Arab Emirates 5.67 +3.26% 128
Argentina Argentina 6.44 +2.02% 75
Armenia Armenia 6.29 +2.76% 85
American Samoa American Samoa 6.45 +0.132% 74
Antigua & Barbuda Antigua & Barbuda 6.89 -0.719% 44
Australia Australia 6.13 -0.625% 96
Austria Austria 6.24 -1.27% 90
Azerbaijan Azerbaijan 6.23 +2.29% 92
Burundi Burundi 3.56 +4.93% 202
Belgium Belgium 6.23 +0.375% 91
Benin Benin 3.77 +0.778% 196
Burkina Faso Burkina Faso 3.74 +2.52% 198
Bangladesh Bangladesh 5.03 +0.781% 153
Bulgaria Bulgaria 7.47 -0.831% 20
Bahrain Bahrain 6.91 +2.25% 43
Bahamas Bahamas 6.82 -1.08% 51
Bosnia & Herzegovina Bosnia & Herzegovina 7.78 +2.69% 13
Belarus Belarus 6.83 +1.03% 49
Belize Belize 5.61 +1.06% 130
Bermuda Bermuda 6.72 +0.253% 56
Bolivia Bolivia 5.23 +1.45% 144
Brazil Brazil 7.04 +1.72% 35
Barbados Barbados 6.54 -1.91% 68
Brunei Brunei 7.22 +0.5% 26
Bhutan Bhutan 5.91 +5.66% 115
Botswana Botswana 4.28 +1.54% 177
Central African Republic Central African Republic 2.31 -2.12% 216
Canada Canada 6.28 +0.438% 86
Switzerland Switzerland 6.67 -0.111% 59
Chile Chile 6.67 +0.297% 60
China China 6.65 -4.5% 62
Côte d’Ivoire Côte d’Ivoire 4 +3.33% 187
Cameroon Cameroon 3.83 +1.5% 194
Congo - Kinshasa Congo - Kinshasa 3.14 -0.713% 213
Congo - Brazzaville Congo - Brazzaville 4.51 +0.572% 166
Colombia Colombia 6.33 +0.928% 80
Comoros Comoros 4.52 +2.98% 165
Cape Verde Cape Verde 5.15 +3.56% 147
Costa Rica Costa Rica 6.56 +1.75% 66
Cuba Cuba 6.31 -7.75% 83
Curaçao Curaçao 6.23 -2.45% 94
Cayman Islands Cayman Islands 8.77 -0.099% 3
Cyprus Cyprus 7.47 +1.98% 21
Czechia Czechia 8.19 -0.635% 7
Germany Germany 5.83 +1.1% 120
Djibouti Djibouti 5.75 +0.534% 125
Dominica Dominica 5.56 -2.56% 134
Denmark Denmark 6.23 -2.18% 93
Dominican Republic Dominican Republic 5.78 +0.432% 122
Algeria Algeria 6.32 +2.32% 81
Ecuador Ecuador 5.94 +1.42% 111
Egypt Egypt 5.29 +1.86% 139
Eritrea Eritrea 3.97 -0.368% 188
Spain Spain 8.12 -0.274% 8
Estonia Estonia 6.39 +0.22% 78
Ethiopia Ethiopia 3.71 +0.717% 200
Finland Finland 6.02 +2.02% 104
Fiji Fiji 5.83 +4.33% 119
France France 5.97 -1.3% 109
Faroe Islands Faroe Islands 5.79 -0.765% 121
Micronesia (Federated States of) Micronesia (Federated States of) 4.31 -2.61% 174
Gabon Gabon 4.7 +1.96% 159
United Kingdom United Kingdom 5.96 -0.7% 110
Georgia Georgia 6.3 +0.366% 84
Ghana Ghana 4.75 +2.38% 158
Gibraltar Gibraltar 6.65 -1.98% 61
Guinea Guinea 3.51 +0.416% 204
Gambia Gambia 3.36 -0.141% 208
Guinea-Bissau Guinea-Bissau 4.24 +0.0826% 178
Equatorial Guinea Equatorial Guinea 4.13 +0.443% 180
Greece Greece 7.49 +0.51% 18
Grenada Grenada 5.24 +1.39% 143
Greenland Greenland 4.95 +4.3% 155
Guatemala Guatemala 4.6 +2.67% 163
Guam Guam 5.48 -3.63% 136
Guyana Guyana 5.59 -0.697% 131
Hong Kong SAR China Hong Kong SAR China 8.36 +0.604% 4
Honduras Honduras 5.25 +2.75% 141
Croatia Croatia 6.71 +0.924% 57
Haiti Haiti 5.02 +1.78% 154
Hungary Hungary 8.34 -0.155% 6
Indonesia Indonesia 6.73 +0.587% 55
Isle of Man Isle of Man 6.37 -3.54% 79
India India 5.97 +1.06% 107
Ireland Ireland 7.61 +1.75% 15
Iran Iran 6.93 +3.84% 41
Iraq Iraq 4.61 +0.344% 162
Iceland Iceland 6.11 +0.406% 98
Israel Israel 5.74 -0.492% 127
Italy Italy 7.1 -3.15% 32
Jamaica Jamaica 6.51 +0.555% 71
Jordan Jordan 5.17 +0.853% 146
Japan Japan 6.93 -4.01% 42
Kazakhstan Kazakhstan 5.84 -0.283% 117
Kenya Kenya 4.03 +1.45% 186
Kyrgyzstan Kyrgyzstan 5.15 +0.438% 148
Cambodia Cambodia 4.8 +6% 156
Kiribati Kiribati 4.46 +2.5% 168
St. Kitts & Nevis St. Kitts & Nevis 6.79 +1.46% 54
South Korea South Korea 7.31 -2.14% 24
Kuwait Kuwait 8.36 +1.27% 5
Laos Laos 5.05 +1.67% 151
Lebanon Lebanon 5.84 +0.434% 118
Liberia Liberia 4.12 +1.61% 182
Libya Libya 7.2 +1.16% 28
St. Lucia St. Lucia 6.82 -0.49% 50
Liechtenstein Liechtenstein 6.49 -2.88% 72
Sri Lanka Sri Lanka 6.55 +3.04% 67
Lesotho Lesotho 3.92 +6.78% 191
Lithuania Lithuania 5.93 -2.04% 113
Luxembourg Luxembourg 7.17 +0.953% 30
Latvia Latvia 6.32 -0.984% 82
Macao SAR China Macao SAR China 7 -3.6% 37
Saint Martin (French part) Saint Martin (French part) 6.18 -1.25% 95
Morocco Morocco 6.26 +1.03% 89
Monaco Monaco 4.55 -0.645% 164
Moldova Moldova 6.42 +0.649% 76
Madagascar Madagascar 4.04 +0.788% 185
Maldives Maldives 6.01 +2.71% 105
Mexico Mexico 6.4 +0.234% 77
Marshall Islands Marshall Islands 5.75 +3.39% 126
North Macedonia North Macedonia 6.87 +0.159% 46
Mali Mali 3.34 +1.97% 209
Malta Malta 6.97 +2.24% 40
Myanmar (Burma) Myanmar (Burma) 6.47 +0.717% 73
Montenegro Montenegro 6.8 +0.593% 53
Mongolia Mongolia 6.06 +0.21% 103
Northern Mariana Islands Northern Mariana Islands 7.43 -2.48% 22
Mozambique Mozambique 3.43 +1.45% 205
Mauritania Mauritania 3.79 +0.469% 195
Mauritius Mauritius 7.31 +3.61% 25
Malawi Malawi 3.38 +5.77% 207
Malaysia Malaysia 6.1 +2.09% 99
Namibia Namibia 4.37 +1.1% 172
New Caledonia New Caledonia 6.8 -1.74% 52
Niger Niger 3.03 +0.564% 214
Nigeria Nigeria 3.96 +1.55% 189
Nicaragua Nicaragua 5.62 +1.96% 129
Netherlands Netherlands 5.76 -1.53% 124
Norway Norway 6.28 -1.76% 87
Nepal Nepal 5.28 +1.94% 140
Nauru Nauru 4.48 +1.89% 167
New Zealand New Zealand 5.94 -1.64% 112
Oman Oman 5.56 +4.88% 133
Pakistan Pakistan 4.13 +1.13% 181
Panama Panama 6.06 -0.417% 102
Peru Peru 6.06 +0.6% 101
Philippines Philippines 5.35 +2.2% 138
Palau Palau 7.48 -1.52% 19
Papua New Guinea Papua New Guinea 5.25 +1.17% 142
Poland Poland 7.5 +2.71% 17
Puerto Rico Puerto Rico 6.51 +0.0774% 70
North Korea North Korea 6.1 -4.24% 100
Portugal Portugal 7.61 -1.47% 14
Paraguay Paraguay 5.1 +1.56% 149
Palestinian Territories Palestinian Territories 4.05 +1.85% 184
French Polynesia French Polynesia 6.85 -0.314% 47
Qatar Qatar 6.68 +3.5% 58
Romania Romania 7.55 +0.215% 16
Russia Russia 7.04 +1.56% 34
Rwanda Rwanda 4.17 +5.04% 179
Saudi Arabia Saudi Arabia 5.21 +3.77% 145
Sudan Sudan 3.83 +0.854% 193
Senegal Senegal 3.93 +1.33% 190
Singapore Singapore 6.58 +0.399% 65
Solomon Islands Solomon Islands 4.68 +0.751% 160
Sierra Leone Sierra Leone 4.06 +1.13% 183
El Salvador El Salvador 6.12 +1.22% 97
San Marino San Marino 8.06 -2.95% 9
Somalia Somalia 3.15 +1.12% 212
Serbia Serbia 7 +0.684% 38
South Sudan South Sudan 5.07 +0.466% 150
São Tomé & Príncipe São Tomé & Príncipe 4.43 +3.06% 169
Suriname Suriname 5.55 -0.949% 135
Slovakia Slovakia 7.9 +1.22% 12
Slovenia Slovenia 7.22 +0.909% 27
Sweden Sweden 6 -1.59% 106
Eswatini Eswatini 4.36 +3.52% 173
Sint Maarten Sint Maarten 8.02 -2.94% 11
Seychelles Seychelles 6.84 +0.211% 48
Syria Syria 5.03 +0.0631% 152
Turks & Caicos Islands Turks & Caicos Islands 8.05 +1.45% 10
Chad Chad 3.34 -0.485% 210
Togo Togo 4.31 +0.788% 175
Thailand Thailand 7.38 -0.838% 23
Tajikistan Tajikistan 4.38 +0.877% 170
Turkmenistan Turkmenistan 5.85 -1.81% 116
Timor-Leste Timor-Leste 3.56 -3.82% 203
Tonga Tonga 4.79 +0.252% 157
Trinidad & Tobago Trinidad & Tobago 7.11 +2.64% 31
Tunisia Tunisia 6.89 +1.57% 45
Turkey Turkey 7.19 +2.94% 29
Tuvalu Tuvalu 4.29 -3.7% 176
Tanzania Tanzania 3.77 +1.18% 197
Uganda Uganda 3 +0.591% 215
Ukraine Ukraine 7.03 +1.25% 36
Uruguay Uruguay 6.61 +0.197% 64
United States United States 5.97 +1.2% 108
Uzbekistan Uzbekistan 5.42 +0.0296% 137
St. Vincent & Grenadines St. Vincent & Grenadines 6.63 +1.48% 63
Venezuela Venezuela 6.27 +0.442% 88
British Virgin Islands British Virgin Islands 9.17 +3.2% 1
U.S. Virgin Islands U.S. Virgin Islands 5.92 -1.13% 114
Vietnam Vietnam 6.53 +1.51% 69
Vanuatu Vanuatu 3.42 -4.49% 206
Samoa Samoa 4.38 +0.111% 171
Kosovo Kosovo 6.97 +0.00638% 39
Yemen Yemen 3.72 +2.32% 199
South Africa South Africa 5.58 +2.4% 132
Zambia Zambia 3.9 +1.89% 192
Zimbabwe Zimbabwe 4.67 +5.22% 161

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.4549.FE.5Y'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.4549.FE.5Y'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))