Population ages 40-44, male (% of male population)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 6.15 -0.294% 136
Afghanistan Afghanistan 3.98 +0.283% 207
Angola Angola 4.35 +0.85% 200
Albania Albania 5.72 +4.19% 153
Andorra Andorra 7.8 -2.88% 31
United Arab Emirates United Arab Emirates 10.4 -0.143% 5
Argentina Argentina 7.05 -0.206% 79
Armenia Armenia 7.44 +2.52% 49
American Samoa American Samoa 6.1 -2.18% 139
Antigua & Barbuda Antigua & Barbuda 7.1 +1.4% 73
Australia Australia 6.87 +2.17% 87
Austria Austria 6.97 +1.46% 81
Azerbaijan Azerbaijan 7.53 +2.64% 42
Burundi Burundi 4.95 +2.57% 183
Belgium Belgium 6.62 -0.698% 102
Benin Benin 4.59 +1.48% 196
Burkina Faso Burkina Faso 4.63 +1.27% 193
Bangladesh Bangladesh 6.6 +2.5% 105
Bulgaria Bulgaria 7.68 -1.07% 36
Bahrain Bahrain 12 +3.1% 3
Bahamas Bahamas 6.8 +0.183% 93
Bosnia & Herzegovina Bosnia & Herzegovina 7.91 -1.2% 27
Belarus Belarus 8.38 +3.6% 22
Belize Belize 6.45 +2.33% 113
Bermuda Bermuda 7.2 -0.314% 66
Bolivia Bolivia 6.08 +1.23% 140
Brazil Brazil 7.82 +0.82% 30
Barbados Barbados 6.71 +1.28% 97
Brunei Brunei 8.65 +0.747% 17
Bhutan Bhutan 7.96 +2.54% 25
Botswana Botswana 5.41 +1.79% 168
Central African Republic Central African Republic 2.36 -0.643% 216
Canada Canada 6.81 +1.23% 90
Switzerland Switzerland 7.22 +0.491% 63
Chile Chile 7.28 +1.1% 59
China China 7.12 +2.16% 71
Côte d’Ivoire Côte d’Ivoire 5.46 +0.216% 165
Cameroon Cameroon 4.8 +1.09% 187
Congo - Kinshasa Congo - Kinshasa 3.84 +1% 212
Congo - Brazzaville Congo - Brazzaville 5.19 -0.461% 174
Colombia Colombia 7.09 +1.32% 74
Comoros Comoros 5.6 +0.324% 159
Cape Verde Cape Verde 7.13 +3.1% 70
Costa Rica Costa Rica 7.42 +2.18% 50
Cuba Cuba 5.93 +3.69% 148
Curaçao Curaçao 6.25 +3.3% 127
Cayman Islands Cayman Islands 9.55 -0.689% 10
Cyprus Cyprus 9.02 +3.32% 13
Czechia Czechia 7.47 -3.54% 48
Germany Germany 6.53 +1.21% 109
Djibouti Djibouti 6.16 -0.238% 135
Dominica Dominica 7.06 +4.09% 77
Denmark Denmark 5.73 -1.58% 152
Dominican Republic Dominican Republic 6.37 +0.704% 118
Algeria Algeria 7.66 +0.95% 38
Ecuador Ecuador 6.75 +1.65% 96
Egypt Egypt 6.31 +1.48% 122
Eritrea Eritrea 3.94 -1.38% 208
Spain Spain 7.48 -4.02% 46
Estonia Estonia 7.79 +2.04% 32
Ethiopia Ethiopia 4.31 -0.073% 201
Finland Finland 6.83 +1.45% 89
Fiji Fiji 7.19 +1.56% 67
France France 6.22 -1.61% 133
Faroe Islands Faroe Islands 5.98 -0.737% 144
Micronesia (Federated States of) Micronesia (Federated States of) 4.63 +1.74% 194
Gabon Gabon 6.37 +1.24% 117
United Kingdom United Kingdom 6.6 +0.836% 104
Georgia Georgia 7.06 +2.46% 75
Ghana Ghana 5.67 +0.768% 154
Gibraltar Gibraltar 6.96 -1.11% 82
Guinea Guinea 3.94 +2.99% 209
Gambia Gambia 4.29 +2.9% 202
Guinea-Bissau Guinea-Bissau 5.08 +1.98% 179
Equatorial Guinea Equatorial Guinea 6.53 +1.83% 110
Greece Greece 7.37 -2.53% 53
Grenada Grenada 7.17 +6.84% 68
Greenland Greenland 6.61 +3.39% 103
Guatemala Guatemala 5.64 +2.84% 156
Guam Guam 5.44 -0.359% 166
Guyana Guyana 5.2 -1.78% 173
Hong Kong SAR China Hong Kong SAR China 6.94 +0.341% 84
Honduras Honduras 6.28 +1.07% 125
Croatia Croatia 7.36 -0.344% 55
Haiti Haiti 5.97 +1.55% 146
Hungary Hungary 7.34 -4.8% 57
Indonesia Indonesia 7.4 +0.193% 51
Isle of Man Isle of Man 5.99 -1.77% 143
India India 6.9 +1.73% 86
Ireland Ireland 7.6 -2.65% 40
Iran Iran 9.12 +3.83% 12
Iraq Iraq 5.18 +0.589% 175
Iceland Iceland 7.22 +0.887% 64
Israel Israel 5.98 +0.087% 145
Italy Italy 6.39 -2.27% 116
Jamaica Jamaica 7.76 +2.98% 33
Jordan Jordan 6.24 +1.17% 130
Japan Japan 6.25 -1.95% 129
Kazakhstan Kazakhstan 6.68 +1.7% 99
Kenya Kenya 5.29 +1.54% 171
Kyrgyzstan Kyrgyzstan 5.87 +1.16% 149
Cambodia Cambodia 7.11 +2.58% 72
Kiribati Kiribati 5.6 +2.76% 158
St. Kitts & Nevis St. Kitts & Nevis 7.37 +1.5% 54
South Korea South Korea 7.97 -1.21% 24
Kuwait Kuwait 13.2 +1.41% 2
Laos Laos 6.25 +2.52% 128
Lebanon Lebanon 5.86 +0.977% 150
Liberia Liberia 4.89 +0.369% 185
Libya Libya 7.6 -2.34% 39
St. Lucia St. Lucia 7.54 +1.26% 41
Liechtenstein Liechtenstein 6.54 -0.798% 108
Sri Lanka Sri Lanka 7.06 -1.66% 76
Lesotho Lesotho 5.77 +5.01% 151
Lithuania Lithuania 7.06 +2.63% 78
Luxembourg Luxembourg 7.68 +0.274% 35
Latvia Latvia 7.51 +3.53% 44
Macao SAR China Macao SAR China 7.91 +6.83% 26
Saint Martin (French part) Saint Martin (French part) 5.53 -1.39% 162
Morocco Morocco 6.91 +1.06% 85
Monaco Monaco 4.27 +2.55% 204
Moldova Moldova 7.51 +4.19% 45
Madagascar Madagascar 4.69 +0.00907% 191
Maldives Maldives 10.4 +8.68% 6
Mexico Mexico 6.3 +0.814% 123
Marshall Islands Marshall Islands 6.33 +0.336% 120
North Macedonia North Macedonia 7.21 -0.0817% 65
Mali Mali 4.29 +0.189% 203
Malta Malta 8.57 +2.13% 18
Myanmar (Burma) Myanmar (Burma) 7.27 +1.43% 60
Montenegro Montenegro 7.24 +0.838% 61
Mongolia Mongolia 6.81 +0.999% 91
Northern Mariana Islands Northern Mariana Islands 6.17 -4.25% 134
Mozambique Mozambique 3.89 +1.14% 211
Mauritania Mauritania 4.14 +1.16% 206
Mauritius Mauritius 7.88 -2.42% 28
Malawi Malawi 4.8 +0.397% 188
Malaysia Malaysia 7.99 +2.81% 23
Namibia Namibia 5.42 +1.32% 167
New Caledonia New Caledonia 7 +0.518% 80
Niger Niger 3.82 +0.0722% 214
Nigeria Nigeria 4.77 +0.0116% 189
Nicaragua Nicaragua 6.23 +1.15% 131
Netherlands Netherlands 6.07 +0.728% 141
Norway Norway 6.64 +0.177% 100
Nepal Nepal 5.47 +0.485% 164
Nauru Nauru 6.52 +2.4% 112
New Zealand New Zealand 6.32 +1.17% 121
Oman Oman 10.4 +3.06% 4
Pakistan Pakistan 5.07 +1.95% 180
Panama Panama 6.62 +0.835% 101
Peru Peru 6.69 +0.788% 98
Philippines Philippines 6.29 +0.831% 124
Palau Palau 8.46 -0.483% 20
Papua New Guinea Papua New Guinea 5.65 +0.873% 155
Poland Poland 8.9 +1.35% 14
Puerto Rico Puerto Rico 6.1 -1.97% 138
North Korea North Korea 6.57 +1.53% 107
Portugal Portugal 6.79 -2.19% 94
Paraguay Paraguay 6.44 +3.11% 115
Palestinian Territories Palestinian Territories 4.85 +2.69% 186
French Polynesia French Polynesia 7.35 +1.71% 56
Qatar Qatar 13.4 +2.82% 1
Romania Romania 7.17 -4.84% 69
Russia Russia 8.41 +2.88% 21
Rwanda Rwanda 5.55 +2.36% 160
Saudi Arabia Saudi Arabia 10.1 +2.74% 7
Sudan Sudan 4.15 +1.59% 205
Senegal Senegal 4.73 +1.21% 190
Singapore Singapore 7.31 +2.09% 58
Solomon Islands Solomon Islands 5.47 +0.32% 163
Sierra Leone Sierra Leone 4.91 +1.33% 184
El Salvador El Salvador 5.21 -0.686% 172
San Marino San Marino 6.15 -2.45% 137
Somalia Somalia 3.9 +0.706% 210
Serbia Serbia 7.38 +0.193% 52
South Sudan South Sudan 5.08 -2.36% 178
São Tomé & Príncipe São Tomé & Príncipe 5.53 +0.0614% 161
Suriname Suriname 6.81 +3.06% 92
Slovakia Slovakia 8.48 -1.2% 19
Slovenia Slovenia 7.84 -2.2% 29
Sweden Sweden 6.35 +0.898% 119
Eswatini Eswatini 6.01 +2.59% 142
Sint Maarten Sint Maarten 6.96 -1.51% 83
Seychelles Seychelles 9.28 +1.3% 11
Syria Syria 5.36 +0.0258% 170
Turks & Caicos Islands Turks & Caicos Islands 9.72 -0.742% 9
Chad Chad 3.83 +1.45% 213
Togo Togo 5.1 +0.193% 177
Thailand Thailand 7.52 -0.925% 43
Tajikistan Tajikistan 5.36 +2.68% 169
Turkmenistan Turkmenistan 6.27 +2.39% 126
Timor-Leste Timor-Leste 4.69 +7.5% 192
Tonga Tonga 4.48 -3% 198
Trinidad & Tobago Trinidad & Tobago 8.88 +2.33% 15
Tunisia Tunisia 7.24 +0.487% 62
Turkey Turkey 7.67 -0.977% 37
Tuvalu Tuvalu 4.62 -2.12% 195
Tanzania Tanzania 4.37 +0.447% 199
Uganda Uganda 3.7 +1.8% 215
Ukraine Ukraine 8.84 +3.01% 16
Uruguay Uruguay 6.45 -0.451% 114
United States United States 6.83 +0.648% 88
Uzbekistan Uzbekistan 6.52 +2.31% 111
St. Vincent & Grenadines St. Vincent & Grenadines 6.59 -0.112% 106
Venezuela Venezuela 6.23 -0.826% 132
British Virgin Islands British Virgin Islands 9.81 -0.0426% 8
U.S. Virgin Islands U.S. Virgin Islands 5.95 +0.00746% 147
Vietnam Vietnam 7.75 +3.48% 34
Vanuatu Vanuatu 5.13 +6.9% 176
Samoa Samoa 4.56 -1.3% 197
Kosovo Kosovo 6.75 +1.55% 95
Yemen Yemen 4.99 +2.23% 181
South Africa South Africa 7.48 +2.58% 47
Zambia Zambia 4.95 +1.06% 182
Zimbabwe Zimbabwe 5.61 +3.59% 157

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.4044.MA.5Y'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.4044.MA.5Y'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))