Population ages 40-44, female (% of female population)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 6.55 -2.02% 100
Afghanistan Afghanistan 4.01 +0.361% 210
Angola Angola 4.46 +0.751% 202
Albania Albania 5.81 +1.29% 154
Andorra Andorra 8.15 -3.92% 14
United Arab Emirates United Arab Emirates 9.07 +4.07% 5
Argentina Argentina 6.83 -0.135% 75
Armenia Armenia 7.42 +2.16% 38
American Samoa American Samoa 5.87 -2.89% 149
Antigua & Barbuda Antigua & Barbuda 6.93 +0.609% 68
Australia Australia 6.86 +1.89% 72
Austria Austria 6.67 +1.54% 89
Azerbaijan Azerbaijan 7.47 +2.98% 34
Burundi Burundi 5.08 +2.59% 181
Belgium Belgium 6.44 -0.311% 106
Benin Benin 4.71 +1.27% 196
Burkina Faso Burkina Faso 4.73 +1.22% 195
Bangladesh Bangladesh 6.58 +5.48% 99
Bulgaria Bulgaria 6.71 -1.16% 85
Bahrain Bahrain 8.6 +1.11% 8
Bahamas Bahamas 6.99 +0.229% 64
Bosnia & Herzegovina Bosnia & Herzegovina 7.18 -2.88% 49
Belarus Belarus 7.37 +2.96% 41
Belize Belize 6.64 +2.26% 91
Bermuda Bermuda 7.16 +0.836% 51
Bolivia Bolivia 6.04 +1.04% 139
Brazil Brazil 7.77 +0.57% 20
Barbados Barbados 6.63 +0.819% 92
Brunei Brunei 7.72 -0.383% 22
Bhutan Bhutan 7.39 +1.95% 39
Botswana Botswana 5.24 +1.05% 175
Central African Republic Central African Republic 3.01 +0.836% 216
Canada Canada 6.74 +0.684% 81
Switzerland Switzerland 7 +0.381% 63
Chile Chile 7.08 +1.1% 55
China China 7.01 +1.77% 61
Côte d’Ivoire Côte d’Ivoire 5.44 +2.34% 171
Cameroon Cameroon 4.85 +1.17% 191
Congo - Kinshasa Congo - Kinshasa 3.89 +0.962% 213
Congo - Brazzaville Congo - Brazzaville 5.16 -0.332% 176
Colombia Colombia 7.07 +1.02% 58
Comoros Comoros 5.48 +0.134% 170
Cape Verde Cape Verde 6.63 +4.77% 93
Costa Rica Costa Rica 7.34 +1.51% 43
Cuba Cuba 5.61 +3.4% 161
Curaçao Curaçao 6.01 +0.285% 141
Cayman Islands Cayman Islands 9.37 -0.785% 4
Cyprus Cyprus 8.52 +1.48% 10
Czechia Czechia 6.79 -3.56% 77
Germany Germany 6.25 +0.787% 129
Djibouti Djibouti 6.26 -0.425% 126
Dominica Dominica 6.73 +5.74% 84
Denmark Denmark 5.6 -1.89% 162
Dominican Republic Dominican Republic 6.33 +0.611% 116
Algeria Algeria 7.52 +1.01% 31
Ecuador Ecuador 6.77 +1.47% 78
Egypt Egypt 6.28 +1.65% 123
Eritrea Eritrea 4.12 -2.33% 208
Spain Spain 7.11 -3.68% 53
Estonia Estonia 6.59 +2.03% 96
Ethiopia Ethiopia 4.36 -0.197% 203
Finland Finland 6.27 +1.32% 125
Fiji Fiji 7.08 +1.76% 56
France France 6.11 -0.832% 137
Faroe Islands Faroe Islands 5.83 -2.16% 152
Micronesia (Federated States of) Micronesia (Federated States of) 4.91 +0.481% 187
Gabon Gabon 5.85 +1.35% 151
United Kingdom United Kingdom 6.55 +1.08% 101
Georgia Georgia 6.7 +1.79% 86
Ghana Ghana 5.7 +0.789% 157
Gibraltar Gibraltar 6.77 -0.533% 79
Guinea Guinea 4.33 +1.71% 205
Gambia Gambia 4.32 +2.97% 206
Guinea-Bissau Guinea-Bissau 5.09 +1.67% 180
Equatorial Guinea Equatorial Guinea 5.15 +2.05% 177
Greece Greece 6.91 -2.84% 70
Grenada Grenada 7.22 +7.72% 46
Greenland Greenland 6.4 +3.52% 109
Guatemala Guatemala 5.75 +2.28% 156
Guam Guam 5.51 -0.331% 167
Guyana Guyana 5.62 -1.44% 160
Hong Kong SAR China Hong Kong SAR China 9.04 +0.378% 7
Honduras Honduras 6.28 +0.939% 122
Croatia Croatia 6.65 -0.338% 90
Haiti Haiti 5.97 +1.62% 144
Hungary Hungary 6.59 -4.77% 95
Indonesia Indonesia 7.24 -0.0684% 45
Isle of Man Isle of Man 6.31 -0.159% 118
India India 6.83 +1.61% 74
Ireland Ireland 7.99 -2% 17
Iran Iran 9.05 +4% 6
Iraq Iraq 5.28 +0.5% 174
Iceland Iceland 6.69 +0.13% 88
Israel Israel 5.97 -0.144% 143
Italy Italy 6.04 -2.34% 140
Jamaica Jamaica 7.44 +2.91% 35
Jordan Jordan 5.99 +0.984% 142
Japan Japan 5.83 -2.08% 153
Kazakhstan Kazakhstan 6.45 +1.29% 105
Kenya Kenya 5.04 +1.75% 183
Kyrgyzstan Kyrgyzstan 5.93 +1.71% 147
Cambodia Cambodia 7.04 +3.01% 59
Kiribati Kiribati 5.86 +3.02% 150
St. Kitts & Nevis St. Kitts & Nevis 8.01 +2.01% 16
South Korea South Korea 7.5 -1.64% 32
Kuwait Kuwait 10.4 +2.29% 1
Laos Laos 6.15 +2.5% 134
Lebanon Lebanon 6.24 -0.0399% 130
Liberia Liberia 4.98 +0.3% 186
Libya Libya 7.43 -2.31% 37
St. Lucia St. Lucia 7.44 +2.1% 36
Liechtenstein Liechtenstein 6.4 +0.572% 110
Sri Lanka Sri Lanka 7.11 -1.28% 54
Lesotho Lesotho 5.97 +5.27% 145
Lithuania Lithuania 5.67 +1.81% 158
Luxembourg Luxembourg 7.64 +0.125% 24
Latvia Latvia 6.34 +2.63% 115
Macao SAR China Macao SAR China 8.4 +3.87% 12
Saint Martin (French part) Saint Martin (French part) 6.25 +0.655% 128
Morocco Morocco 6.97 +0.906% 65
Monaco Monaco 4.57 -0.038% 201
Moldova Moldova 6.96 +3.06% 66
Madagascar Madagascar 4.75 -0.0877% 194
Maldives Maldives 8.27 +6.8% 13
Mexico Mexico 6.88 +0.229% 71
Marshall Islands Marshall Islands 6.74 +0.695% 80
North Macedonia North Macedonia 6.94 +0.177% 67
Mali Mali 4.23 +0.165% 207
Malta Malta 7.72 +1.3% 21
Myanmar (Burma) Myanmar (Burma) 7.2 +1.32% 48
Montenegro Montenegro 6.93 -0.164% 69
Mongolia Mongolia 6.69 +0.943% 87
Northern Mariana Islands Northern Mariana Islands 6.34 -3.82% 114
Mozambique Mozambique 4.34 +0.615% 204
Mauritania Mauritania 4.59 +0.837% 200
Mauritius Mauritius 7.35 -3.37% 42
Malawi Malawi 5.09 +3.6% 179
Malaysia Malaysia 7.49 +2.82% 33
Namibia Namibia 5.43 +2.41% 172
New Caledonia New Caledonia 7.07 +0.0529% 57
Niger Niger 3.74 +0.212% 215
Nigeria Nigeria 4.76 -0.0105% 193
Nicaragua Nicaragua 6.61 +1.33% 94
Netherlands Netherlands 5.96 +0.423% 146
Norway Norway 6.43 +0.271% 108
Nepal Nepal 6.31 +2.24% 119
Nauru Nauru 6.45 +5.21% 104
New Zealand New Zealand 6.34 +1.18% 113
Oman Oman 7.82 +2.61% 18
Pakistan Pakistan 5.12 +1.96% 178
Panama Panama 6.58 +0.747% 98
Peru Peru 6.74 +1.13% 82
Philippines Philippines 6.19 +0.841% 132
Palau Palau 6.82 -1.93% 76
Papua New Guinea Papua New Guinea 6.16 +0.824% 133
Poland Poland 8.15 +1.28% 15
Puerto Rico Puerto Rico 6.14 -2.03% 135
North Korea North Korea 6.31 +1.62% 117
Portugal Portugal 6.59 -2.68% 97
Paraguay Paraguay 6.39 +3.07% 111
Palestinian Territories Palestinian Territories 5.02 +2.02% 184
French Polynesia French Polynesia 7.54 +1.91% 29
Qatar Qatar 9.92 +1.67% 3
Romania Romania 6.27 -5.19% 124
Russia Russia 7.62 +2.39% 27
Rwanda Rwanda 5.64 +1.56% 159
Saudi Arabia Saudi Arabia 7.21 +2.65% 47
Sudan Sudan 4.71 +0.687% 197
Senegal Senegal 4.89 +1.96% 189
Singapore Singapore 7.38 +1.48% 40
Solomon Islands Solomon Islands 5.54 +1.14% 165
Sierra Leone Sierra Leone 4.9 +1.08% 188
El Salvador El Salvador 6.25 -1.61% 127
San Marino San Marino 6.28 -4.77% 121
Somalia Somalia 4.01 +0.766% 211
Serbia Serbia 6.84 +0.0826% 73
South Sudan South Sudan 5.53 -2.09% 166
São Tomé & Príncipe São Tomé & Príncipe 5.5 +0.597% 169
Suriname Suriname 6.28 +1.72% 120
Slovakia Slovakia 7.64 -1.16% 25
Slovenia Slovenia 7.02 -1.52% 60
Sweden Sweden 6.12 +0.582% 136
Eswatini Eswatini 5.89 +3.19% 148
Sint Maarten Sint Maarten 7.81 +0.0577% 19
Seychelles Seychelles 7.18 -1.51% 50
Syria Syria 5.55 -0.64% 164
Turks & Caicos Islands Turks & Caicos Islands 8.48 -1.54% 11
Chad Chad 3.94 +1.17% 212
Togo Togo 5.05 +0.0707% 182
Thailand Thailand 7.3 -1.14% 44
Tajikistan Tajikistan 5.42 +2.76% 173
Turkmenistan Turkmenistan 6.21 +1.18% 131
Timor-Leste Timor-Leste 4.7 +7.62% 198
Tonga Tonga 5.56 +2% 163
Trinidad & Tobago Trinidad & Tobago 8.6 +2.36% 9
Tunisia Tunisia 7.67 +0.919% 23
Turkey Turkey 7.53 -1.23% 30
Tuvalu Tuvalu 4.03 -1.83% 209
Tanzania Tanzania 4.6 +0.354% 199
Uganda Uganda 3.79 +1.89% 214
Ukraine Ukraine 7.63 +2.13% 26
Uruguay Uruguay 6.11 -1.1% 138
United States United States 6.52 +0.496% 102
Uzbekistan Uzbekistan 6.44 +2.33% 107
St. Vincent & Grenadines St. Vincent & Grenadines 7.01 +0.101% 62
Venezuela Venezuela 6.46 -0.9% 103
British Virgin Islands British Virgin Islands 10.3 -0.374% 2
U.S. Virgin Islands U.S. Virgin Islands 5.78 -0.375% 155
Vietnam Vietnam 7.54 +3.2% 28
Vanuatu Vanuatu 5.5 +7.48% 168
Samoa Samoa 4.88 -1.23% 190
Kosovo Kosovo 6.74 -0.495% 83
Yemen Yemen 4.98 +2.41% 185
South Africa South Africa 7.13 +2.98% 52
Zambia Zambia 4.84 +1.12% 192
Zimbabwe Zimbabwe 6.37 +2.2% 112

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.4044.FE.5Y'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.4044.FE.5Y'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))