Population ages 05-09, female (% of female population)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 5.27 -3.95% 166
Afghanistan Afghanistan 14.1 -0.815% 12
Angola Angola 14.5 -0.662% 8
Albania Albania 5.38 -3.89% 162
Andorra Andorra 3.9 -5.87% 210
United Arab Emirates United Arab Emirates 7.67 -3.24% 113
Argentina Argentina 7.54 -3.16% 115
Armenia Armenia 5.82 -2.67% 145
American Samoa American Samoa 9.52 -0.159% 79
Antigua & Barbuda Antigua & Barbuda 5.25 -1.91% 167
Australia Australia 5.72 -1.84% 148
Austria Austria 4.71 +0.37% 189
Azerbaijan Azerbaijan 6.74 -4.69% 128
Burundi Burundi 14.7 -2.76% 7
Belgium Belgium 5.18 -1.43% 170
Benin Benin 13.9 -0.883% 15
Burkina Faso Burkina Faso 14 -2.24% 14
Bangladesh Bangladesh 8.63 -0.899% 93
Bulgaria Bulgaria 4.56 -0.848% 195
Bahrain Bahrain 8.44 -2.68% 94
Bahamas Bahamas 5.47 -3.77% 159
Bosnia & Herzegovina Bosnia & Herzegovina 4.01 +0.479% 207
Belarus Belarus 5.37 -4.53% 163
Belize Belize 9.17 -1.13% 86
Bermuda Bermuda 4.31 -2.33% 201
Bolivia Bolivia 9.75 -1.3% 75
Brazil Brazil 6.46 -1.12% 129
Barbados Barbados 5.39 -0.608% 161
Brunei Brunei 7.24 -2.07% 120
Bhutan Bhutan 6.91 -5.58% 125
Botswana Botswana 10.5 +0.0332% 67
Central African Republic Central African Republic 14.8 -2.34% 6
Canada Canada 4.91 -1.57% 180
Switzerland Switzerland 4.92 -0.0584% 179
Chile Chile 5.8 -2.56% 146
China China 5.71 -3.61% 149
Côte d’Ivoire Côte d’Ivoire 14.2 -1.52% 10
Cameroon Cameroon 13.8 -0.153% 16
Congo - Kinshasa Congo - Kinshasa 15.1 +0.0399% 4
Congo - Brazzaville Congo - Brazzaville 13.2 -1.94% 22
Colombia Colombia 6.42 -1.06% 131
Comoros Comoros 12.3 -0.702% 40
Cape Verde Cape Verde 9.22 -1.19% 84
Costa Rica Costa Rica 6.41 -1.83% 133
Cuba Cuba 4.94 -1.94% 178
Curaçao Curaçao 4.81 -5.84% 185
Cayman Islands Cayman Islands 5.13 -0.846% 172
Cyprus Cyprus 5.29 +0.254% 164
Czechia Czechia 5.11 +0.951% 173
Germany Germany 4.66 +1.17% 191
Djibouti Djibouti 9.47 -1.54% 80
Dominica Dominica 5.91 -3.06% 143
Denmark Denmark 5.08 +0.904% 176
Dominican Republic Dominican Republic 8.69 -1.12% 92
Algeria Algeria 10.7 -1.07% 64
Ecuador Ecuador 7.91 -1.66% 109
Egypt Egypt 11 -3.77% 59
Eritrea Eritrea 12.1 -2.01% 46
Spain Spain 4.15 -2.93% 206
Estonia Estonia 5 +0.868% 177
Ethiopia Ethiopia 12.6 +0.362% 33
Finland Finland 4.66 -4.14% 190
Fiji Fiji 8.97 -1.71% 89
France France 5.18 -2.45% 169
Faroe Islands Faroe Islands 7.19 +0.0356% 122
Micronesia (Federated States of) Micronesia (Federated States of) 10.1 -0.937% 71
Gabon Gabon 12.4 -0.239% 36
United Kingdom United Kingdom 5.61 -1.97% 154
Georgia Georgia 6.75 -1.78% 127
Ghana Ghana 11.9 -1.97% 49
Gibraltar Gibraltar 5.46 -2.71% 160
Guinea Guinea 13.3 -0.607% 21
Gambia Gambia 13.2 -2.51% 23
Guinea-Bissau Guinea-Bissau 12.6 -1.92% 35
Equatorial Guinea Equatorial Guinea 13.1 -0.894% 26
Greece Greece 4.2 -2.18% 204
Grenada Grenada 6.09 -3.68% 137
Greenland Greenland 7.3 +1.8% 119
Guatemala Guatemala 10.6 -1.93% 65
Guam Guam 8.74 -0.653% 90
Guyana Guyana 9.45 -0.415% 81
Hong Kong SAR China Hong Kong SAR China 3.18 -3.37% 216
Honduras Honduras 10 -0.867% 73
Croatia Croatia 4.21 -1.41% 203
Haiti Haiti 10.2 -1.2% 68
Hungary Hungary 4.6 +0.652% 193
Indonesia Indonesia 7.98 -2.23% 106
Isle of Man Isle of Man 4.41 -2.62% 200
India India 8.1 -1.54% 102
Ireland Ireland 6.01 -1.91% 141
Iran Iran 8.04 -2.8% 104
Iraq Iraq 11.8 -3.6% 51
Iceland Iceland 5.62 -1.6% 153
Israel Israel 9.05 -0.44% 87
Italy Italy 3.76 -2.46% 212
Jamaica Jamaica 5.92 -2.27% 142
Jordan Jordan 10.2 -2.47% 69
Japan Japan 3.69 -2.19% 213
Kazakhstan Kazakhstan 9.44 -0.163% 82
Kenya Kenya 11.9 -1.76% 48
Kyrgyzstan Kyrgyzstan 10.9 +0.134% 62
Cambodia Cambodia 9.7 +0.0555% 76
Kiribati Kiribati 11 -0.854% 60
St. Kitts & Nevis St. Kitts & Nevis 6.09 -1.28% 139
South Korea South Korea 3.57 -6.05% 214
Kuwait Kuwait 7.91 -2.88% 108
Laos Laos 10.1 -0.827% 72
Lebanon Lebanon 8.12 -6.02% 101
Liberia Liberia 12.9 -1.51% 29
Libya Libya 9.21 -2.39% 85
St. Lucia St. Lucia 5.68 -0.787% 152
Liechtenstein Liechtenstein 4.48 +2.38% 199
Sri Lanka Sri Lanka 6.93 -1.97% 124
Lesotho Lesotho 11.4 -1.69% 54
Lithuania Lithuania 4.87 -0.0298% 181
Luxembourg Luxembourg 5.21 -0.857% 168
Latvia Latvia 5.08 -1.51% 175
Macao SAR China Macao SAR China 4.76 -2.35% 187
Saint Martin (French part) Saint Martin (French part) 6.45 -0.437% 130
Morocco Morocco 8.4 -1.36% 95
Monaco Monaco 4.51 +3.58% 198
Moldova Moldova 6.42 -2.92% 132
Madagascar Madagascar 12.8 -0.254% 31
Maldives Maldives 8.07 -3.45% 103
Mexico Mexico 7.72 -2.35% 112
Marshall Islands Marshall Islands 11.4 +0.971% 55
North Macedonia North Macedonia 5.52 -2.41% 158
Mali Mali 15.3 -1.02% 3
Malta Malta 4.52 -0.149% 197
Myanmar (Burma) Myanmar (Burma) 7.95 -0.512% 107
Montenegro Montenegro 5.6 -1.21% 155
Mongolia Mongolia 11.1 -3.23% 58
Northern Mariana Islands Northern Mariana Islands 6.95 -3.79% 123
Mozambique Mozambique 14.2 -0.556% 9
Mauritania Mauritania 13.8 -0.687% 17
Mauritius Mauritius 4.81 -0.973% 183
Malawi Malawi 13 -1.87% 27
Malaysia Malaysia 7.86 -3.11% 110
Namibia Namibia 12.4 -0.0477% 38
New Caledonia New Caledonia 6.85 -1.54% 126
Niger Niger 15.4 -1.17% 1
Nigeria Nigeria 13.6 -1.97% 18
Nicaragua Nicaragua 9.33 -1.66% 83
Netherlands Netherlands 4.81 -0.62% 184
Norway Norway 5.29 -2.14% 165
Nepal Nepal 8.72 -1.45% 91
Nauru Nauru 12.2 -2.13% 42
New Zealand New Zealand 5.79 -1.86% 147
Oman Oman 11.8 -2.07% 52
Pakistan Pakistan 12 -1.45% 47
Panama Panama 8.31 -1.91% 97
Peru Peru 7.74 -1.51% 111
Philippines Philippines 9.63 -1.88% 77
Palau Palau 6.17 -1.95% 135
Papua New Guinea Papua New Guinea 11.1 -0.895% 57
Poland Poland 4.77 -0.399% 186
Puerto Rico Puerto Rico 3.47 -4.86% 215
North Korea North Korea 6.15 +0.37% 136
Portugal Portugal 3.94 +1.33% 209
Paraguay Paraguay 9.57 -0.476% 78
Palestinian Territories Palestinian Territories 12.6 -1.1% 32
French Polynesia French Polynesia 6.32 -4.23% 134
Qatar Qatar 9.03 -0.761% 88
Romania Romania 5.11 +0.553% 174
Russia Russia 5.59 -3.65% 156
Rwanda Rwanda 12.2 -0.903% 43
Saudi Arabia Saudi Arabia 10.1 -2.39% 70
Sudan Sudan 13.1 +0.414% 24
Senegal Senegal 12.2 -1.65% 44
Singapore Singapore 3.94 +0.18% 208
Solomon Islands Solomon Islands 12.4 -1.96% 39
Sierra Leone Sierra Leone 12.4 -1.04% 37
El Salvador El Salvador 7.63 -2.7% 114
San Marino San Marino 3.89 -4.29% 211
Somalia Somalia 15.4 -0.374% 2
Serbia Serbia 4.59 +0.111% 194
South Sudan South Sudan 11.7 -4.93% 53
São Tomé & Príncipe São Tomé & Príncipe 12.3 -2.68% 41
Suriname Suriname 8.36 -1.99% 96
Slovakia Slovakia 5.15 +0.534% 171
Slovenia Slovenia 4.83 -1.52% 182
Sweden Sweden 5.7 -0.855% 150
Eswatini Eswatini 10.9 -1.05% 61
Sint Maarten Sint Maarten 4.19 -6.35% 205
Seychelles Seychelles 7.21 -0.802% 121
Syria Syria 7.98 -6.27% 105
Turks & Caicos Islands Turks & Caicos Islands 5.54 +0.836% 157
Chad Chad 14.9 -1.94% 5
Togo Togo 13.1 -0.682% 25
Thailand Thailand 4.63 -3.41% 192
Tajikistan Tajikistan 12.1 -2.16% 45
Turkmenistan Turkmenistan 10.6 -1.14% 66
Timor-Leste Timor-Leste 11.8 -0.0549% 50
Tonga Tonga 10.8 -3.55% 63
Trinidad & Tobago Trinidad & Tobago 5.83 -1.52% 144
Tunisia Tunisia 8.18 -2.6% 99
Turkey Turkey 7.31 -2.26% 118
Tuvalu Tuvalu 11.3 +0.555% 56
Tanzania Tanzania 14 -0.164% 13
Uganda Uganda 14.1 -0.65% 11
Ukraine Ukraine 4.29 -4.96% 202
Uruguay Uruguay 6.05 -4.1% 140
United States United States 5.7 -1.69% 151
Uzbekistan Uzbekistan 9.83 +0.679% 74
St. Vincent & Grenadines St. Vincent & Grenadines 7.33 -3.42% 117
Venezuela Venezuela 8.25 -4.01% 98
British Virgin Islands British Virgin Islands 4.53 -5.03% 196
U.S. Virgin Islands U.S. Virgin Islands 4.76 +0.0541% 188
Vietnam Vietnam 7.43 -4.54% 116
Vanuatu Vanuatu 12.8 -1.09% 30
Samoa Samoa 13 -0.452% 28
Kosovo Kosovo 6.09 -4.89% 138
Yemen Yemen 13.6 +0.327% 19
South Africa South Africa 8.12 +0.841% 100
Zambia Zambia 13.6 -1.3% 20
Zimbabwe Zimbabwe 12.6 -2.7% 34

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.0509.FE.5Y'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.0509.FE.5Y'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))