Population ages 0-14, male (% of male population)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 18.2 -2.01% 147
Afghanistan Afghanistan 43.4 -0.843% 12
Angola Angola 45.1 -0.486% 9
Albania Albania 17.7 -1.19% 154
Andorra Andorra 11.9 -2.74% 212
United Arab Emirates United Arab Emirates 12.7 -1.63% 207
Argentina Argentina 22.3 -2.69% 112
Armenia Armenia 21.5 -1.67% 118
American Samoa American Samoa 26.9 -1.7% 90
Antigua & Barbuda Antigua & Barbuda 19 -2.3% 139
Australia Australia 18.5 -1.08% 143
Austria Austria 14.9 -0.562% 196
Azerbaijan Azerbaijan 23.4 -2.42% 107
Burundi Burundi 45.3 -1.46% 8
Belgium Belgium 16.6 -1.86% 167
Benin Benin 42 -0.701% 16
Burkina Faso Burkina Faso 42.6 -1.43% 15
Bangladesh Bangladesh 29.4 -1.37% 81
Bulgaria Bulgaria 15.4 -0.389% 189
Bahrain Bahrain 15.4 -1.44% 188
Bahamas Bahamas 19 -2.16% 138
Bosnia & Herzegovina Bosnia & Herzegovina 14.2 -1.48% 201
Belarus Belarus 18 -2.27% 150
Belize Belize 27 -1.48% 89
Bermuda Bermuda 14.2 -2.21% 200
Bolivia Bolivia 30.2 -1.16% 77
Brazil Brazil 20.4 -1.31% 122
Barbados Barbados 18.3 -1.47% 145
Brunei Brunei 20.4 -0.925% 123
Bhutan Bhutan 20.3 -2.64% 125
Botswana Botswana 32.5 -0.367% 64
Central African Republic Central African Republic 51.5 -0.486% 1
Canada Canada 15.6 -1.24% 181
Switzerland Switzerland 15.4 -0.473% 185
Chile Chile 17.4 -2.41% 159
China China 16.8 -3.57% 164
Côte d’Ivoire Côte d’Ivoire 40.6 -1.02% 26
Cameroon Cameroon 41.9 -0.73% 18
Congo - Kinshasa Congo - Kinshasa 46.5 -0.101% 5
Congo - Brazzaville Congo - Brazzaville 40.8 -1.05% 25
Colombia Colombia 21 -1.58% 121
Comoros Comoros 37.4 -0.798% 44
Cape Verde Cape Verde 25.8 -3.22% 97
Costa Rica Costa Rica 19.4 -2.74% 133
Cuba Cuba 16 -1.29% 174
Curaçao Curaçao 16 -1.97% 175
Cayman Islands Cayman Islands 16.3 -0.706% 171
Cyprus Cyprus 16.4 +0.0987% 170
Czechia Czechia 16 -1.7% 176
Germany Germany 14.5 -0.0648% 199
Djibouti Djibouti 29.8 -1.34% 79
Dominica Dominica 17.9 -0.777% 151
Denmark Denmark 16.2 -1.1% 172
Dominican Republic Dominican Republic 27.2 -1.23% 88
Algeria Algeria 30.3 -0.997% 75
Ecuador Ecuador 25 -2.18% 102
Egypt Egypt 32.4 -1.35% 65
Eritrea Eritrea 39 -1.42% 36
Spain Spain 13.5 -2.57% 205
Estonia Estonia 16.9 -2.08% 162
Ethiopia Ethiopia 39.7 -0.758% 30
Finland Finland 15.1 -2% 192
Fiji Fiji 27.8 -0.837% 85
France France 17.4 -1.71% 158
Faroe Islands Faroe Islands 19.8 -0.95% 128
Micronesia (Federated States of) Micronesia (Federated States of) 33 -0.716% 62
Gabon Gabon 36.1 -0.385% 52
United Kingdom United Kingdom 17.9 -1.31% 152
Georgia Georgia 23 -1.12% 110
Ghana Ghana 36.3 -0.971% 50
Gibraltar Gibraltar 18.3 -0.768% 146
Guinea Guinea 41.9 -0.902% 17
Gambia Gambia 40.8 -1.19% 24
Guinea-Bissau Guinea-Bissau 39.7 -1.19% 29
Equatorial Guinea Equatorial Guinea 35.7 -0.4% 53
Greece Greece 14 -2.61% 202
Grenada Grenada 19.8 -1.97% 129
Greenland Greenland 20.3 +0.0645% 124
Guatemala Guatemala 32.3 -1.72% 66
Guam Guam 26.5 -0.000678% 94
Guyana Guyana 30.4 -0.509% 74
Hong Kong SAR China Hong Kong SAR China 11.9 -1.59% 213
Honduras Honduras 31.1 -1.2% 69
Croatia Croatia 14.9 -1.51% 195
Haiti Haiti 31.8 -1.17% 68
Hungary Hungary 15.4 -0.606% 186
Indonesia Indonesia 25.1 -1.34% 100
Isle of Man Isle of Man 14.6 -2.14% 198
India India 24.9 -1.78% 104
Ireland Ireland 19.2 -2.41% 136
Iran Iran 22.7 -1.73% 111
Iraq Iraq 37.4 -1.42% 45
Iceland Iceland 17.8 -1.6% 153
Israel Israel 28.2 -0.764% 84
Italy Italy 12.5 -2.13% 210
Jamaica Jamaica 19.2 -2.21% 135
Jordan Jordan 30.3 -1.58% 76
Japan Japan 12 -1.83% 211
Kazakhstan Kazakhstan 30.8 -0.572% 71
Kenya Kenya 37.3 -1.6% 48
Kyrgyzstan Kyrgyzstan 33.6 -1.02% 60
Cambodia Cambodia 31 -1.11% 70
Kiribati Kiribati 36.3 -0.515% 51
St. Kitts & Nevis St. Kitts & Nevis 19 -0.395% 140
South Korea South Korea 10.9 -3.71% 215
Kuwait Kuwait 15.2 -2.04% 190
Laos Laos 30.6 -1.13% 72
Lebanon Lebanon 27.6 -2.05% 87
Liberia Liberia 40.1 -1.19% 27
Libya Libya 27.7 -1.96% 86
St. Lucia St. Lucia 18 -1.92% 149
Liechtenstein Liechtenstein 15.1 -0.904% 193
Sri Lanka Sri Lanka 23.2 -1.4% 108
Lesotho Lesotho 35.6 -1.16% 54
Lithuania Lithuania 16 -1.32% 177
Luxembourg Luxembourg 16 -0.295% 173
Latvia Latvia 17.2 -1.77% 161
Macao SAR China Macao SAR China 15.5 -0.899% 183
Saint Martin (French part) Saint Martin (French part) 23.1 +1.58% 109
Morocco Morocco 26 -1.53% 96
Monaco Monaco 14 +2.33% 203
Moldova Moldova 22 -0.703% 113
Madagascar Madagascar 39.6 -0.786% 31
Maldives Maldives 16.8 -2.35% 163
Mexico Mexico 25.7 -1.62% 98
Marshall Islands Marshall Islands 34.7 -0.776% 55
North Macedonia North Macedonia 17.7 -1.34% 156
Mali Mali 46.2 -0.682% 6
Malta Malta 13 -0.884% 206
Myanmar (Burma) Myanmar (Burma) 25.1 -0.838% 101
Montenegro Montenegro 19.5 -1.11% 131
Mongolia Mongolia 33.2 -1.35% 61
Northern Mariana Islands Northern Mariana Islands 22 -2.44% 114
Mozambique Mozambique 46 -0.668% 7
Mauritania Mauritania 44.1 -0.803% 11
Mauritius Mauritius 14.7 -1.71% 197
Malawi Malawi 41.7 -1.45% 20
Malaysia Malaysia 21.5 -2.22% 119
Namibia Namibia 37.7 -0.778% 43
New Caledonia New Caledonia 22 -0.95% 115
Niger Niger 46.6 -0.785% 3
Nigeria Nigeria 41.1 -1.18% 23
Nicaragua Nicaragua 29.7 -1.54% 80
Netherlands Netherlands 15.5 -1.01% 184
Norway Norway 16.5 -1.98% 169
Nepal Nepal 30.6 -0.71% 73
Nauru Nauru 38.2 -1.12% 42
New Zealand New Zealand 18.7 -1.45% 141
Oman Oman 20.2 -2.26% 126
Pakistan Pakistan 37 -0.844% 49
Panama Panama 25.5 -1.48% 99
Peru Peru 24.5 -1.56% 105
Philippines Philippines 28.5 -2.46% 83
Palau Palau 17.7 -1.26% 155
Papua New Guinea Papua New Guinea 33.8 -0.96% 59
Poland Poland 15.7 -1.87% 179
Puerto Rico Puerto Rico 12.7 -3.14% 208
North Korea North Korea 19.7 -0.242% 130
Portugal Portugal 13.8 -0.691% 204
Paraguay Paraguay 29.2 -0.637% 82
Palestinian Territories Palestinian Territories 39.1 -0.63% 35
French Polynesia French Polynesia 19.5 -3.11% 132
Qatar Qatar 10.8 -0.651% 216
Romania Romania 16.6 -0.983% 166
Russia Russia 19.1 -1.26% 137
Rwanda Rwanda 38.5 -0.997% 39
Saudi Arabia Saudi Arabia 20.1 -0.999% 127
Sudan Sudan 41.4 -0.404% 22
Senegal Senegal 38.9 -1.27% 37
Singapore Singapore 11.6 -0.973% 214
Solomon Islands Solomon Islands 37.3 -1.07% 47
Sierra Leone Sierra Leone 38.5 -1.15% 40
El Salvador El Salvador 26.8 -1.68% 91
San Marino San Marino 12.7 -3.38% 209
Somalia Somalia 47.2 -0.181% 2
Serbia Serbia 15.2 +0.00526% 191
South Sudan South Sudan 40 -2.36% 28
São Tomé & Príncipe São Tomé & Príncipe 38.3 -1.03% 41
Suriname Suriname 26.1 -1.11% 95
Slovakia Slovakia 16.5 -0.922% 168
Slovenia Slovenia 15 -1.38% 194
Sweden Sweden 17.3 -1.56% 160
Eswatini Eswatini 34.2 -0.87% 56
Sint Maarten Sint Maarten 16.7 -3% 165
Seychelles Seychelles 18.5 -0.813% 142
Syria Syria 29.8 -3.92% 78
Turks & Caicos Islands Turks & Caicos Islands 15.8 -0.187% 178
Chad Chad 46.5 -1.45% 4
Togo Togo 39.6 -0.913% 32
Thailand Thailand 15.6 -2.14% 180
Tajikistan Tajikistan 37.3 -0.574% 46
Turkmenistan Turkmenistan 32.8 -0.577% 63
Timor-Leste Timor-Leste 34 -1.58% 57
Tonga Tonga 38.7 -0.214% 38
Trinidad & Tobago Trinidad & Tobago 18.3 -1.45% 144
Tunisia Tunisia 25 -1.65% 103
Turkey Turkey 21.9 -1.71% 117
Tuvalu Tuvalu 33.9 +0.928% 58
Tanzania Tanzania 43.3 -0.425% 13
Uganda Uganda 44.3 -0.881% 10
Ukraine Ukraine 15.4 -2.99% 187
Uruguay Uruguay 19.3 -2.1% 134
United States United States 17.7 -1.55% 157
Uzbekistan Uzbekistan 31.9 +0.766% 67
St. Vincent & Grenadines St. Vincent & Grenadines 21.2 -1.55% 120
Venezuela Venezuela 26.5 -2.34% 93
British Virgin Islands British Virgin Islands 15.5 -4.55% 182
U.S. Virgin Islands U.S. Virgin Islands 18 +0.346% 148
Vietnam Vietnam 24.5 -1.44% 106
Vanuatu Vanuatu 39.1 -0.722% 34
Samoa Samoa 39.4 -0.623% 33
Kosovo Kosovo 22 -2.52% 116
Yemen Yemen 41.6 -0.249% 21
South Africa South Africa 26.7 -0.75% 92
Zambia Zambia 41.9 -1.2% 19
Zimbabwe Zimbabwe 43.2 -1.17% 14

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.0014.MA.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.0014.MA.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))