Personal remittances, received (% of GDP)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Angola Angola 0.0175 +23.4% 102
Albania Albania 8.37 -3.22% 22
Argentina Argentina 0.165 +5.55% 87
Armenia Armenia 4.58 -24% 33
Antigua & Barbuda Antigua & Barbuda 1.18 -32.1% 57
Australia Australia 0.108 +7.54% 92
Austria Austria 0.689 +8% 68
Azerbaijan Azerbaijan 1.82 -31.1% 52
Belgium Belgium 2.29 -0.731% 47
Bangladesh Bangladesh 6.03 +18.9% 27
Bulgaria Bulgaria 2.38 +6.65% 45
Bahamas Bahamas 0.416 +1.46% 74
Bosnia & Herzegovina Bosnia & Herzegovina 11 +7.72% 16
Belarus Belarus 1.82 +4.65% 51
Belize Belize 4.38 -10.1% 34
Brazil Brazil 0.225 +11.2% 81
Canada Canada 0.038 -2.54% 98
Switzerland Switzerland 0.374 -2.55% 76
Chile Chile 0.0303 +4.81% 99
China China 0.168 +3.84% 86
Colombia Colombia 2.84 +2.76% 40
Cape Verde Cape Verde 12.1 -2.52% 12
Costa Rica Costa Rica 0.76 -0.695% 65
Czechia Czechia 1.23 -1.18% 55
Germany Germany 0.455 -1.94% 73
Djibouti Djibouti 1.37 -8.39% 53
Dominica Dominica 5.61 +7.23% 28
Denmark Denmark 0.355 +1.13% 78
Dominican Republic Dominican Republic 9.05 +2.65% 20
Ecuador Ecuador 5.25 +16.6% 31
Spain Spain 0.364 +10.6% 77
Estonia Estonia 1.16 -1.66% 60
Finland Finland 0.25 -1.54% 80
France France 1.17 -3.61% 59
United Kingdom United Kingdom 0.133 -0.355% 88
Georgia Georgia 11.8 -13.3% 13
Gambia Gambia 21.1 -1.87% 8
Greece Greece 0.218 -1.9% 82
Grenada Grenada 5.05 -4.87% 32
Guatemala Guatemala 19.1 -0.103% 9
Hong Kong SAR China Hong Kong SAR China 0.114 -4.61% 91
Honduras Honduras 25.7 -1.55% 5
Croatia Croatia 7.28 +1.17% 24
Hungary Hungary 2.35 -2.16% 46
Indonesia Indonesia 1.15 +8.87% 61
India India 3.52 +7.11% 36
Iceland Iceland 0.72 +3.89% 67
Israel Israel 0.176 -8.05% 84
Italy Italy 0.47 -10.5% 72
Jamaica Jamaica 17.9 -3.53% 10
Japan Japan 0.115 +3.13% 90
Kazakhstan Kazakhstan 0.0834 -28.1% 94
Cambodia Cambodia 6.1 -7.15% 26
St. Kitts & Nevis St. Kitts & Nevis 3.42 -2.94% 37
Kuwait Kuwait 0.0127 -1.11% 103
St. Lucia St. Lucia 2.55 -2.15% 43
Lesotho Lesotho 22 -3.89% 7
Lithuania Lithuania 1.24 +1.36% 54
Luxembourg Luxembourg 2.61 -8.09% 42
Latvia Latvia 3.07 +5.83% 39
Moldova Moldova 10.5 -12.5% 18
Maldives Maldives 0.081 -0.784% 95
Mexico Mexico 3.65 -1.13% 35
North Macedonia North Macedonia 2.75 -6.4% 41
Malta Malta 0.0633 -8.49% 97
Montenegro Montenegro 10.6 -0.853% 17
Mozambique Mozambique 1.19 -2.02% 56
Malaysia Malaysia 0.38 -10.8% 75
Namibia Namibia 1.07 +5.82% 62
Nigeria Nigeria 11.3 +111% 15
Nicaragua Nicaragua 26.6 +1.72% 3
Netherlands Netherlands 0.355 +0.919% 79
Norway Norway 0.128 +3.45% 89
Nepal Nepal 33.1 +30.5% 2
Pakistan Pakistan 9.36 +19.1% 19
Panama Panama 0.616 -0.431% 70
Philippines Philippines 8.73 -2.46% 21
Poland Poland 0.95 -9.65% 63
Portugal Portugal 0.585 -0.601% 71
Paraguay Paraguay 1.98 +14.2% 48
Palestinian Territories Palestinian Territories 5.37 -70.5% 30
Qatar Qatar 0.662 -1.87% 69
Romania Romania 2.49 -12.4% 44
Russia Russia 0.0878 -30.5% 93
Saudi Arabia Saudi Arabia 0.026 +1.47% 101
Solomon Islands Solomon Islands 5.41 +6.18% 29
El Salvador El Salvador 24 -1.94% 6
Suriname Suriname 3.4 -20% 38
Slovakia Slovakia 1.93 -4.87% 49
Slovenia Slovenia 1.18 -12.1% 58
Sweden Sweden 0.771 +10.8% 64
Thailand Thailand 1.82 -3.08% 50
Tajikistan Tajikistan 47.9 +26.5% 1
Timor-Leste Timor-Leste 11.7 +25.8% 14
Trinidad & Tobago Trinidad & Tobago 0.754 -5.06% 66
Turkey Turkey 0.0742 -19.4% 96
Ukraine Ukraine 6.27 -24% 25
Uruguay Uruguay 0.168 -2.61% 85
United States United States 0.027 -3.36% 100
Uzbekistan Uzbekistan 14.4 +4.47% 11
St. Vincent & Grenadines St. Vincent & Grenadines 8.16 -4.51% 23
Samoa Samoa 26.4 -6.41% 4
South Africa South Africa 0.214 +1.27% 83

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'BX.TRF.PWKR.DT.GD.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'BX.TRF.PWKR.DT.GD.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))