People using safely managed sanitation services, urban (% of urban population)

Source: worldbank.org, 03.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Albania Albania 49.6 +4.74% 58
Andorra Andorra 100 0% 1
United Arab Emirates United Arab Emirates 98.5 0% 8
Argentina Argentina 46.2 -0.426% 59
Armenia Armenia 0 114
Austria Austria 100 0% 3
Azerbaijan Azerbaijan 63 +2.29% 48
Benin Benin 3.64 0% 113
Burkina Faso Burkina Faso 12.1 +0.41% 109
Bangladesh Bangladesh 28.8 +1.2% 87
Bulgaria Bulgaria 77.2 +1.39% 34
Bosnia & Herzegovina Bosnia & Herzegovina 58.1 0% 51
Belarus Belarus 81.5 +0.0155% 31
Brazil Brazil 51.4 0% 56
Bhutan Bhutan 41 0% 68
Central African Republic Central African Republic 23.4 0% 91
Canada Canada 84 0% 29
Switzerland Switzerland 99.9 0% 4
Chile Chile 99.2 0% 5
China China 84.7 +0.516% 25
Côte d’Ivoire Côte d’Ivoire 20.1 +0.592% 100
Congo - Kinshasa Congo - Kinshasa 15.2 -0.661% 105
Colombia Colombia 16.8 +0.714% 103
Costa Rica Costa Rica 23.1 +1.21% 92
Cuba Cuba 37.1 +0.545% 72
Cyprus Cyprus 86.2 0% 23
Germany Germany 98.5 0% 7
Djibouti Djibouti 44.8 0% 60
Dominican Republic Dominican Republic 42.3 -0.875% 66
Algeria Algeria 64.6 0% 43
Ecuador Ecuador 30.9 -1.99% 84
Egypt Egypt 72.6 0% 38
Estonia Estonia 97.7 +0.202% 9
Ethiopia Ethiopia 17.4 0% 101
Fiji Fiji 42.7 -0.329% 65
United Kingdom United Kingdom 99 0% 6
Georgia Georgia 14.1 -0.722% 106
Ghana Ghana 14 +2.41% 107
Gambia Gambia 31 -0.565% 83
Guinea-Bissau Guinea-Bissau 21.3 0% 97
Greece Greece 97.4 0% 12
Guyana Guyana 34.1 -1.24% 80
Hong Kong SAR China Hong Kong SAR China 96.5 +0.945% 14
Honduras Honduras 40.5 +0.0191% 70
Hungary Hungary 90.5 0% 19
India India 42.7 +2.88% 64
Ireland Ireland 84.8 0% 24
Iran Iran 76.2 -0.737% 35
Iraq Iraq 54.7 +1.65% 53
Israel Israel 96.4 +0.793% 16
Italy Italy 79.4 0% 32
Jordan Jordan 84.4 0% 27
Kazakhstan Kazakhstan 84.3 -0.104% 28
Kenya Kenya 27.9 +1.19% 89
Kyrgyzstan Kyrgyzstan 86.3 +0.289% 22
Cambodia Cambodia 44.7 +1.35% 61
Kiribati Kiribati 24.6 +1.12% 90
Kuwait Kuwait 100 +0.00001% 2
Laos Laos 63.3 0% 47
Lesotho Lesotho 39.4 0% 71
Lithuania Lithuania 97.5 +0.193% 10
Luxembourg Luxembourg 96.4 +0.328% 15
Macao SAR China Macao SAR China 68.1 +1.5% 41
Morocco Morocco 34.4 0% 78
Monaco Monaco 100 0% 1
Moldova Moldova 84.6 +0.807% 26
Madagascar Madagascar 16.3 +2.68% 104
Mexico Mexico 65.1 +4.06% 42
North Macedonia North Macedonia 8.19 0% 110
Mali Mali 7.5 +1.12% 111
Myanmar (Burma) Myanmar (Burma) 52.7 0% 55
Montenegro Montenegro 64.1 +4.1% 45
Mongolia Mongolia 70.3 +0.0755% 39
Malawi Malawi 41.2 +3.1% 67
Niger Niger 20.6 +1.55% 99
Nigeria Nigeria 36.6 +2.72% 74
Netherlands Netherlands 97.5 0% 11
Nepal Nepal 44.6 0% 62
Panama Panama 50 0% 57
Peru Peru 61.6 +4.4% 49
Philippines Philippines 56.2 +1.06% 52
Papua New Guinea Papua New Guinea 28.3 0% 88
Portugal Portugal 95.9 +0.272% 18
Paraguay Paraguay 53 +0.124% 54
Palestinian Territories Palestinian Territories 74.6 +1.63% 36
Russia Russia 64.2 +0.0463% 44
Saudi Arabia Saudi Arabia 82.4 0% 30
Senegal Senegal 13.9 +0.219% 108
Singapore Singapore 100 0% 1
Sierra Leone Sierra Leone 22.5 +4.01% 93
El Salvador El Salvador 17.4 -0.768% 102
Somalia Somalia 44.5 0% 63
Serbia Serbia 22.4 -0.867% 94
São Tomé & Príncipe São Tomé & Príncipe 34.8 0% 75
Suriname Suriname 20.7 0% 98
Slovakia Slovakia 88.5 -0.009% 21
Sweden Sweden 96 0% 17
Turks & Caicos Islands Turks & Caicos Islands 33.3 0% 81
Chad Chad 32 0% 82
Togo Togo 7.13 0% 112
Thailand Thailand 30 0% 85
Tonga Tonga 22.3 -0.109% 96
Tunisia Tunisia 88.9 0% 20
Turkey Turkey 78 +2.73% 33
Tuvalu Tuvalu 34.7 -0.645% 77
Tanzania Tanzania 34.4 -0.011% 79
Uganda Uganda 22.4 +0.249% 95
Ukraine Ukraine 68.9 0% 40
United States United States 97.2 -0.00282% 13
Uzbekistan Uzbekistan 63.4 -0.186% 46
Vietnam Vietnam 40.8 +0.131% 69
Vanuatu Vanuatu 29.8 -2.2% 86
Samoa Samoa 36.7 -0.701% 73
Yemen Yemen 60.5 0% 50
South Africa South Africa 73.1 +0.446% 37
Zimbabwe Zimbabwe 34.7 0% 76

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SH.STA.SMSS.UR.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SH.STA.SMSS.UR.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))