Out-of-pocket expenditure (% of current health expenditure)

Source: worldbank.org, 03.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 77.9 +0.948% 3
Angola Angola 28.7 +10.1% 92
Albania Albania 51.3 -14.1% 26
Andorra Andorra 8.84 -24.7% 172
United Arab Emirates United Arab Emirates 12.3 +17.4% 150
Argentina Argentina 26.4 +5.87% 103
Armenia Armenia 79.1 +0.552% 2
Antigua & Barbuda Antigua & Barbuda 24.8 +15.1% 108
Australia Australia 15.3 +10.4% 137
Austria Austria 16 +1.63% 136
Azerbaijan Azerbaijan 64.5 -2.37% 13
Burundi Burundi 24.5 -0.28% 110
Belgium Belgium 20 +6.75% 125
Benin Benin 42.5 -12.6% 45
Burkina Faso Burkina Faso 34.6 -0.083% 68
Bangladesh Bangladesh 72.5 -0.607% 5
Bulgaria Bulgaria 35.1 +3.99% 67
Bahrain Bahrain 23.5 -8.54% 115
Bahamas Bahamas 24.2 -4.96% 113
Bosnia & Herzegovina Bosnia & Herzegovina 30.9 +0.549% 84
Belarus Belarus 27.6 +26% 97
Belize Belize 26.6 +20.5% 102
Bolivia Bolivia 21.9 -3.79% 121
Brazil Brazil 27.4 +8.31% 100
Barbados Barbados 46.7 +20.6% 35
Brunei Brunei 7.66 +10.5% 178
Bhutan Bhutan 34.6 +61.3% 69
Botswana Botswana 4.39 +2.95% 184
Central African Republic Central African Republic 47.6 -3.9% 33
Canada Canada 14.9 +6.51% 138
Switzerland Switzerland 21.6 +1.38% 122
Chile Chile 35.5 +8.67% 66
China China 33.6 -2.35% 73
Côte d’Ivoire Côte d’Ivoire 28.8 +1.56% 90
Cameroon Cameroon 67.7 -4.16% 8
Congo - Kinshasa Congo - Kinshasa 37.1 -5.24% 62
Congo - Brazzaville Congo - Brazzaville 25.4 +6.28% 105
Colombia Colombia 14.4 +5.09% 140
Comoros Comoros 43.9 -21.3% 41
Cape Verde Cape Verde 25.7 +20.5% 104
Costa Rica Costa Rica 22.4 +9.35% 120
Cuba Cuba 11.1 +32.7% 156
Cyprus Cyprus 14.6 +5.84% 139
Czechia Czechia 14.3 +14.5% 141
Germany Germany 10.7 -10.2% 161
Djibouti Djibouti 31 +13.7% 83
Dominica Dominica 27.5 +14.2% 99
Denmark Denmark 13 +2.59% 145
Dominican Republic Dominican Republic 27.6 +16.9% 98
Algeria Algeria 50 +23.7% 28
Ecuador Ecuador 32.5 +5.76% 78
Egypt Egypt 53.8 -1.95% 22
Eritrea Eritrea 54.3 +9.33% 21
Spain Spain 19.2 -0.866% 129
Estonia Estonia 23.1 +4.48% 116
Ethiopia Ethiopia 44.6 +20.5% 39
Finland Finland 16.1 -3.39% 135
Fiji Fiji 8 -67.6% 176
France France 8.92 +2.12% 171
Micronesia (Federated States of) Micronesia (Federated States of) 2.84 +7.13% 187
Gabon Gabon 18.6 -13.4% 131
United Kingdom United Kingdom 13.3 +7.25% 144
Georgia Georgia 40.4 +29.6% 48
Ghana Ghana 25 -5.53% 106
Guinea Guinea 55.5 +3.72% 20
Gambia Gambia 19.9 -5.44% 126
Guinea-Bissau Guinea-Bissau 64.9 +8.85% 12
Equatorial Guinea Equatorial Guinea 70.4 -9.08% 6
Greece Greece 33.5 +0.661% 75
Grenada Grenada 53.7 +3.3% 23
Guatemala Guatemala 58.4 -4.26% 17
Guyana Guyana 23.1 -18.3% 118
Honduras Honduras 51.1 -1.26% 27
Croatia Croatia 9.19 -2.23% 170
Haiti Haiti 48.2 +9.45% 31
Hungary Hungary 24.3 -1.5% 112
Indonesia Indonesia 33 +21.3% 77
India India 46 +1.93% 36
Ireland Ireland 10.7 -0.139% 162
Iran Iran 39.1 +13.2% 55
Iraq Iraq 47.8 -4.16% 32
Iceland Iceland 13.7 -5.98% 143
Israel Israel 20.2 -3.56% 124
Italy Italy 22.7 +0.0565% 119
Jamaica Jamaica 11.1 -15.2% 158
Jordan Jordan 40.2 +7.37% 52
Japan Japan 11 -6.46% 160
Kazakhstan Kazakhstan 30.9 +23.3% 85
Kenya Kenya 24.2 +6.76% 114
Kyrgyzstan Kyrgyzstan 38.4 -1.78% 59
Cambodia Cambodia 61.2 +11.4% 16
Kiribati Kiribati 0.788 +17.8% 189
St. Kitts & Nevis St. Kitts & Nevis 43.3 +11.4% 42
South Korea South Korea 28.8 -3.9% 91
Kuwait Kuwait 11.5 +41.1% 154
Laos Laos 28.7 -6.58% 94
Lebanon Lebanon 33.4 -3.72% 76
Liberia Liberia 62.2 -0.618% 15
Libya Libya 30.5 +15.7% 87
St. Lucia St. Lucia 38.7 +4.05% 58
Sri Lanka Sri Lanka 40.2 -6.43% 50
Lesotho Lesotho 12.6 -14% 147
Lithuania Lithuania 31.8 +6.34% 80
Luxembourg Luxembourg 8.67 -1.48% 173
Latvia Latvia 30.7 +13.9% 86
Morocco Morocco 43 +1.77% 44
Monaco Monaco 7.56 +9.77% 180
Moldova Moldova 31.7 +7.8% 81
Madagascar Madagascar 32.3 -1.3% 79
Maldives Maldives 17.5 +17.6% 132
Mexico Mexico 39.1 -5.51% 54
Marshall Islands Marshall Islands 1.2 +0.558% 188
North Macedonia North Macedonia 40.2 -3.65% 51
Mali Mali 43.2 -2.25% 43
Malta Malta 30 +1.19% 88
Myanmar (Burma) Myanmar (Burma) 65.1 +20.4% 11
Montenegro Montenegro 36.7 -3.53% 63
Mongolia Mongolia 38.9 +26.2% 56
Mozambique Mozambique 9.69 +5.17% 166
Mauritania Mauritania 40.8 -15.3% 47
Mauritius Mauritius 44 +8.89% 40
Malawi Malawi 12.1 -1.87% 151
Malaysia Malaysia 37.9 +18% 60
Namibia Namibia 8.1 +3.56% 175
Niger Niger 40.3 -5.14% 49
Nigeria Nigeria 76.1 -0.149% 4
Nicaragua Nicaragua 35.7 +15.7% 65
Netherlands Netherlands 10 +6.97% 164
Norway Norway 14.1 +1.61% 142
Nepal Nepal 55.8 +8.83% 19
Nauru Nauru 0.468 -23.7% 190
New Zealand New Zealand 11.7 +0.899% 153
Oman Oman 7.48 +21.9% 181
Pakistan Pakistan 47.4 -6.53% 34
Panama Panama 37.1 -0.533% 61
Peru Peru 27 +7.64% 101
Philippines Philippines 44.6 +8.29% 38
Palau Palau 16.6 +2.39% 133
Papua New Guinea Papua New Guinea 9.25 -10.6% 168
Poland Poland 18.8 -5.08% 130
Portugal Portugal 29.6 +0.804% 89
Paraguay Paraguay 38.9 +8.27% 57
Palestinian Territories Palestinian Territories 33.6 +0.478% 74
Qatar Qatar 7.73 +17.9% 177
Romania Romania 21.4 +2.29% 123
Russia Russia 27.7 -3.6% 95
Rwanda Rwanda 9.62 -4.83% 167
Saudi Arabia Saudi Arabia 11 +8.47% 159
Sudan Sudan 51.4 -9.57% 25
Senegal Senegal 48.8 +4.16% 30
Singapore Singapore 24.7 +2.48% 109
Solomon Islands Solomon Islands 3.72 +2.22% 185
Sierra Leone Sierra Leone 52.7 +2.42% 24
El Salvador El Salvador 31.6 +3.61% 82
San Marino San Marino 11.4 -3.54% 155
Somalia Somalia 42.1 -1.06% 46
Serbia Serbia 36.5 +2.16% 64
South Sudan South Sudan 34.4 +10.7% 70
São Tomé & Príncipe São Tomé & Príncipe 12 +2.71% 152
Suriname Suriname 23.1 -5.38% 117
Slovakia Slovakia 19.3 -0.73% 128
Slovenia Slovenia 12.4 -3.45% 149
Sweden Sweden 12.9 +0.56% 146
Eswatini Eswatini 10.4 -3.99% 163
Seychelles Seychelles 24.4 +6.75% 111
Syria Syria 45.7 -5.32% 37
Chad Chad 58.2 -16.3% 18
Togo Togo 63.2 -8.42% 14
Thailand Thailand 9.21 +1.85% 169
Tajikistan Tajikistan 65.2 +0.072% 10
Turkmenistan Turkmenistan 79.2 +2.25% 1
Timor-Leste Timor-Leste 5.48 -7.01% 183
Tonga Tonga 2.94 -15.6% 186
Trinidad & Tobago Trinidad & Tobago 49.2 +5.08% 29
Tunisia Tunisia 33.9 +0.259% 72
Turkey Turkey 19.5 +19.7% 127
Tuvalu Tuvalu 0.369 +1.7% 191
Tanzania Tanzania 28.7 +12.5% 93
Uganda Uganda 34.1 +24.6% 71
Uruguay Uruguay 16.3 +3.24% 134
United States United States 11.1 +2.46% 157
Uzbekistan Uzbekistan 65.3 +8.26% 9
St. Vincent & Grenadines St. Vincent & Grenadines 27.6 +5.46% 96
Venezuela Venezuela 24.9 -11.3% 107
Vietnam Vietnam 39.5 -2.28% 53
Vanuatu Vanuatu 7.58 +5.02% 179
Samoa Samoa 12.5 +11.8% 148
Yemen Yemen 70.2 -2.64% 7
South Africa South Africa 6.71 +1.6% 182
Zambia Zambia 9.69 +36.9% 165
Zimbabwe Zimbabwe 8.16 -20.3% 174

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SH.XPD.OOPC.CH.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SH.XPD.OOPC.CH.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))