Number of neonatal deaths

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 50,351 -2.05% 7
Angola Angola 35,347 -0.153% 12
Albania Albania 198 -2.94% 131
Andorra Andorra 1 0% 180
United Arab Emirates United Arab Emirates 258 +3.2% 124
Argentina Argentina 2,519 -7.76% 71
Armenia Armenia 183 -4.69% 133
Antigua & Barbuda Antigua & Barbuda 6 0% 178
Australia Australia 703 -0.846% 104
Austria Austria 154 -9.41% 140
Azerbaijan Azerbaijan 1,602 -6.37% 87
Burundi Burundi 9,030 -1.45% 44
Belgium Belgium 214 -13% 129
Benin Benin 13,377 -0.742% 37
Burkina Faso Burkina Faso 17,816 -0.907% 29
Bangladesh Bangladesh 62,615 -0.369% 6
Bulgaria Bulgaria 162 -5.81% 137
Bahrain Bahrain 86 -2.27% 153
Bahamas Bahamas 40 -2.44% 164
Bosnia & Herzegovina Bosnia & Herzegovina 111 -2.63% 147
Belarus Belarus 50 -16.7% 160
Belize Belize 69 +6.15% 156
Bolivia Bolivia 3,185 -3.78% 69
Brazil Brazil 19,804 -9.58% 26
Barbados Barbados 22 -4.35% 170
Brunei Brunei 31 -3.13% 166
Bhutan Bhutan 126 -4.55% 145
Botswana Botswana 1,280 -2.14% 92
Central African Republic Central African Republic 7,326 -12.7% 47
Canada Canada 1,209 -0.165% 95
Switzerland Switzerland 236 +1.72% 127
Chile Chile 818 -3.65% 100
China China 25,199 -11.9% 22
Côte d’Ivoire Côte d’Ivoire 28,104 -0.861% 18
Cameroon Cameroon 24,122 -0.757% 23
Congo - Kinshasa Congo - Kinshasa 110,646 +0.249% 5
Congo - Brazzaville Congo - Brazzaville 3,344 -0.535% 66
Colombia Colombia 4,615 -4.09% 58
Comoros Comoros 549 -1.61% 111
Cape Verde Cape Verde 54 -3.57% 159
Costa Rica Costa Rica 374 +2.75% 119
Cuba Cuba 398 +3.92% 118
Cyprus Cyprus 28 0% 167
Czechia Czechia 120 -9.09% 146
Germany Germany 1,642 -1.2% 83
Djibouti Djibouti 674 -2.03% 106
Dominica Dominica 23 0% 169
Denmark Denmark 101 -8.18% 151
Dominican Republic Dominican Republic 4,417 -3.43% 59
Algeria Algeria 13,897 -4.67% 35
Ecuador Ecuador 1,919 -2.49% 76
Egypt Egypt 22,248 -2.03% 25
Eritrea Eritrea 1,623 -1.99% 85
Spain Spain 572 -3.21% 110
Estonia Estonia 11 -8.33% 175
Ethiopia Ethiopia 112,319 -1.63% 4
Finland Finland 58 -3.33% 158
Fiji Fiji 248 0% 125
France France 1,759 -3.62% 81
Micronesia (Federated States of) Micronesia (Federated States of) 31 -3.13% 166
Gabon Gabon 1,152 -3.27% 96
United Kingdom United Kingdom 1,846 -1.02% 78
Georgia Georgia 233 -2.1% 128
Ghana Ghana 18,856 -1.19% 27
Guinea Guinea 14,778 -0.872% 33
Gambia Gambia 1,943 -1.37% 75
Guinea-Bissau Guinea-Bissau 2,111 -1.54% 73
Equatorial Guinea Equatorial Guinea 1,490 -1.78% 89
Greece Greece 167 -3.47% 136
Grenada Grenada 17 -5.56% 173
Guatemala Guatemala 3,771 -3.16% 62
Guyana Guyana 262 -4.73% 123
Honduras Honduras 2,063 -3.05% 74
Croatia Croatia 88 -6.38% 152
Haiti Haiti 6,027 -2% 53
Hungary Hungary 180 -6.74% 134
Indonesia Indonesia 47,186 -3.86% 9
India India 401,499 -4.96% 1
Ireland Ireland 134 +2.29% 144
Iran Iran 8,689 -5.04% 45
Iraq Iraq 14,901 -2.18% 32
Iceland Iceland 6 0% 178
Israel Israel 300 -2.91% 121
Italy Italy 625 -5.59% 107
Jamaica Jamaica 480 -1.64% 113
Jordan Jordan 1,782 -2.89% 79
Japan Japan 604 -5.48% 109
Kazakhstan Kazakhstan 1,758 -8.96% 82
Kenya Kenya 32,251 -0.377% 13
Kyrgyzstan Kyrgyzstan 1,633 -0.91% 84
Cambodia Cambodia 4,278 -4.79% 60
Kiribati Kiribati 77 -1.28% 155
St. Kitts & Nevis St. Kitts & Nevis 6 0% 178
South Korea South Korea 278 -11.5% 122
Kuwait Kuwait 238 +1.28% 126
Laos Laos 3,265 -2.89% 68
Lebanon Lebanon 1,038 +5.06% 98
Liberia Liberia 5,038 -0.336% 57
Libya Libya 711 +0.994% 103
St. Lucia St. Lucia 20 -4.76% 172
Sri Lanka Sri Lanka 1,331 -4.59% 91
Lesotho Lesotho 1,601 -2.32% 88
Lithuania Lithuania 42 -2.33% 163
Luxembourg Luxembourg 11 0% 175
Latvia Latvia 21 -19.2% 171
Morocco Morocco 6,413 -4.67% 52
Monaco Monaco 1 0% 180
Moldova Moldova 355 +2.01% 120
Madagascar Madagascar 23,855 +0.383% 24
Maldives Maldives 22 -8.33% 170
Mexico Mexico 15,479 -4.72% 30
Marshall Islands Marshall Islands 11 -8.33% 175
North Macedonia North Macedonia 24 -33.3% 168
Mali Mali 30,771 +0.487% 15
Malta Malta 15 -6.25% 174
Myanmar (Burma) Myanmar (Burma) 18,611 -2.8% 28
Montenegro Montenegro 7 0% 177
Mongolia Mongolia 484 -6.74% 112
Mozambique Mozambique 32,015 +0.229% 14
Mauritania Mauritania 3,710 -0.616% 63
Mauritius Mauritius 106 -6.19% 150
Malawi Malawi 12,460 -1.17% 39
Malaysia Malaysia 1,776 -0.727% 80
Namibia Namibia 1,848 -2.84% 77
Niger Niger 36,965 +2.08% 11
Nigeria Nigeria 252,871 -0.399% 3
Nicaragua Nicaragua 1,112 -5.6% 97
Netherlands Netherlands 437 -3.1% 116
Norway Norway 68 0% 157
Nepal Nepal 9,523 -5.22% 43
Nauru Nauru 1 -50% 180
New Zealand New Zealand 160 -1.84% 138
Oman Oman 399 +7.84% 117
Pakistan Pakistan 258,588 -2.02% 2
Panama Panama 472 -4.07% 114
Peru Peru 4,188 -2.45% 61
Philippines Philippines 25,699 -1.23% 20
Palau Palau 2 0% 179
Papua New Guinea Papua New Guinea 5,236 -2.73% 54
Poland Poland 749 -5.19% 101
North Korea North Korea 3,295 +0.396% 67
Portugal Portugal 138 -0.719% 142
Paraguay Paraguay 1,242 -4.09% 94
Palestinian Territories Palestinian Territories 1,274 -0.856% 93
Qatar Qatar 110 +0.917% 148
Romania Romania 613 +3.03% 108
Russia Russia 2,230 -9.39% 72
Rwanda Rwanda 7,168 -0.679% 49
Saudi Arabia Saudi Arabia 1,614 +6.68% 86
Sudan Sudan 41,690 -0.651% 10
Senegal Senegal 11,862 -1.71% 41
Singapore Singapore 43 +2.38% 162
Solomon Islands Solomon Islands 179 -1.65% 135
Sierra Leone Sierra Leone 7,569 -1.21% 46
El Salvador El Salvador 439 -3.94% 115
San Marino San Marino 0 181
Somalia Somalia 27,511 -2.26% 19
Serbia Serbia 190 -4.52% 132
South Sudan South Sudan 13,196 +2.16% 38
São Tomé & Príncipe São Tomé & Príncipe 44 -2.22% 161
Suriname Suriname 108 -3.57% 149
Slovakia Slovakia 159 -0.625% 139
Slovenia Slovenia 23 -4.17% 169
Sweden Sweden 138 -7.38% 142
Eswatini Eswatini 725 -3.2% 102
Seychelles Seychelles 15 0% 174
Syria Syria 5,209 +6.41% 55
Turks & Caicos Islands Turks & Caicos Islands 1 -50% 180
Chad Chad 25,682 +0.852% 21
Togo Togo 6,685 -0.713% 50
Thailand Thailand 3,077 -4.47% 70
Tajikistan Tajikistan 3,434 -4.66% 65
Turkmenistan Turkmenistan 3,659 -3.89% 64
Timor-Leste Timor-Leste 679 -2.16% 105
Tonga Tonga 10 -9.09% 176
Trinidad & Tobago Trinidad & Tobago 207 -4.61% 130
Tunisia Tunisia 1,403 -9.07% 90
Turkey Turkey 5,207 -3.75% 56
Tuvalu Tuvalu 2 0% 179
Tanzania Tanzania 48,216 -0.808% 8
Uganda Uganda 30,558 -1.63% 16
Ukraine Ukraine 1,000 -11.5% 99
Uruguay Uruguay 137 -6.16% 143
United States United States 12,320 -4.57% 40
Uzbekistan Uzbekistan 7,184 -1.66% 48
St. Vincent & Grenadines St. Vincent & Grenadines 7 -12.5% 177
Venezuela Venezuela 6,414 +0.881% 51
British Virgin Islands British Virgin Islands 2 0% 179
Vietnam Vietnam 14,239 -4.42% 34
Vanuatu Vanuatu 78 -2.5% 154
Samoa Samoa 34 -5.56% 165
Kosovo Kosovo 140 -7.28% 141
Yemen Yemen 29,609 +0.41% 17
South Africa South Africa 13,830 +0.501% 36
Zambia Zambia 15,062 -0.311% 31
Zimbabwe Zimbabwe 11,110 -2.06% 42

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SH.DTH.NMRT'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SH.DTH.NMRT'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))