Number of deaths ages 15-19 years

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 11,128 -1.58% 13
Angola Angola 8,880 +1.64% 16
Albania Albania 51 -16.4% 150
Andorra Andorra 1 0% 174
United Arab Emirates United Arab Emirates 202 -0.98% 116
Argentina Argentina 2,076 +0.29% 55
Armenia Armenia 87 -1.14% 139
Antigua & Barbuda Antigua & Barbuda 3 0% 172
Australia Australia 438 -2.88% 98
Austria Austria 143 +3.62% 123
Azerbaijan Azerbaijan 425 -1.39% 99
Burundi Burundi 2,285 +2.74% 52
Belgium Belgium 133 0% 128
Benin Benin 3,072 +1.02% 46
Burkina Faso Burkina Faso 3,678 +11.4% 40
Bangladesh Bangladesh 18,376 -2.04% 8
Bulgaria Bulgaria 142 +1.43% 124
Bahrain Bahrain 29 -6.45% 157
Bahamas Bahamas 17 -5.56% 162
Bosnia & Herzegovina Bosnia & Herzegovina 45 -6.25% 152
Belarus Belarus 135 +0.746% 127
Belize Belize 42 0% 153
Bolivia Bolivia 950 -1.55% 74
Brazil Brazil 14,767 -5.24% 9
Barbados Barbados 7 0% 169
Brunei Brunei 11 0% 166
Bhutan Bhutan 69 -4.17% 144
Botswana Botswana 241 -2.03% 109
Central African Republic Central African Republic 1,344 -92.7% 67
Canada Canada 787 +1.81% 79
Switzerland Switzerland 98 +1.03% 136
Chile Chile 527 +0.573% 91
China China 20,157 -1.59% 6
Côte d’Ivoire Côte d’Ivoire 4,358 +1.14% 34
Cameroon Cameroon 6,637 +0.606% 22
Congo - Kinshasa Congo - Kinshasa 34,495 +1.59% 3
Congo - Brazzaville Congo - Brazzaville 545 +1.3% 88
Colombia Colombia 3,937 -1.01% 37
Comoros Comoros 58 -1.69% 148
Cape Verde Cape Verde 22 0% 160
Costa Rica Costa Rica 210 +2.94% 115
Cuba Cuba 279 +0.722% 107
Cyprus Cyprus 12 0% 165
Czechia Czechia 152 +4.11% 121
Germany Germany 910 +2.36% 75
Djibouti Djibouti 226 -3% 110
Dominica Dominica 3 0% 172
Denmark Denmark 64 +1.59% 146
Dominican Republic Dominican Republic 732 -3.68% 80
Algeria Algeria 1,782 +7.22% 59
Ecuador Ecuador 1,973 +22.6% 56
Egypt Egypt 7,731 +3.7% 19
Eritrea Eritrea 640 -0.775% 84
Spain Spain 470 +4.91% 95
Estonia Estonia 29 +7.41% 157
Ethiopia Ethiopia 20,366 -1.19% 5
Finland Finland 119 +5.31% 131
Fiji Fiji 62 0% 147
France France 877 +2.1% 76
Micronesia (Federated States of) Micronesia (Federated States of) 10 -9.09% 167
Gabon Gabon 216 0% 114
United Kingdom United Kingdom 968 +2.11% 72
Georgia Georgia 108 -6.09% 132
Ghana Ghana 4,650 -0.705% 32
Guinea Guinea 3,835 +0.0261% 38
Gambia Gambia 440 +0.686% 97
Guinea-Bissau Guinea-Bissau 474 +0.424% 93
Equatorial Guinea Equatorial Guinea 354 +1.72% 102
Greece Greece 102 -1.92% 135
Grenada Grenada 4 0% 171
Guatemala Guatemala 1,788 -0.942% 58
Guyana Guyana 73 -2.67% 142
Honduras Honduras 834 -1.88% 78
Croatia Croatia 72 -11.1% 143
Haiti Haiti 1,492 +7.11% 62
Hungary Hungary 125 -3.1% 129
Indonesia Indonesia 19,971 -1.42% 7
India India 80,744 -4.11% 1
Ireland Ireland 79 +6.76% 141
Iran Iran 6,054 +0.415% 23
Iraq Iraq 3,486 +1.25% 42
Iceland Iceland 5 0% 170
Israel Israel 175 +5.42% 119
Italy Italy 567 +2.16% 86
Jamaica Jamaica 217 -1.36% 113
Jordan Jordan 661 +1.69% 83
Japan Japan 1,367 +3.09% 65
Kazakhstan Kazakhstan 848 +4.43% 77
Kenya Kenya 6,993 -0.129% 21
Kyrgyzstan Kyrgyzstan 328 +2.18% 105
Cambodia Cambodia 1,606 +0.501% 61
Kiribati Kiribati 18 0% 161
St. Kitts & Nevis St. Kitts & Nevis 4 0% 171
South Korea South Korea 538 +0.373% 89
Kuwait Kuwait 89 0% 137
Laos Laos 636 -1.4% 85
Lebanon Lebanon 354 +3.51% 102
Liberia Liberia 1,446 +1.19% 63
Libya Libya 957 +169% 73
St. Lucia St. Lucia 11 0% 166
Sri Lanka Sri Lanka 555 -2.12% 87
Lesotho Lesotho 169 -8.65% 120
Lithuania Lithuania 50 0% 151
Luxembourg Luxembourg 7 0% 169
Latvia Latvia 38 -2.56% 154
Morocco Morocco 1,422 +11.4% 64
Monaco Monaco 0 175
Moldova Moldova 107 +3.88% 133
Madagascar Madagascar 4,989 -1.05% 30
Maldives Maldives 13 0% 164
Mexico Mexico 9,087 -3.36% 15
Marshall Islands Marshall Islands 4 -20% 171
North Macedonia North Macedonia 36 +2.86% 155
Mali Mali 5,109 +0.571% 28
Malta Malta 4 0% 171
Myanmar (Burma) Myanmar (Burma) 3,340 -8.32% 43
Montenegro Montenegro 18 +20% 161
Mongolia Mongolia 185 +2.78% 117
Mozambique Mozambique 5,526 +0.619% 25
Mauritania Mauritania 691 +1.77% 82
Mauritius Mauritius 50 -5.66% 151
Malawi Malawi 3,267 +0.43% 44
Malaysia Malaysia 1,143 -5.38% 71
Namibia Namibia 337 -2.03% 104
Niger Niger 5,521 +1.32% 26
Nigeria Nigeria 36,277 +0.08% 2
Nicaragua Nicaragua 471 -0.842% 94
Netherlands Netherlands 219 +1.39% 112
Norway Norway 88 +4.76% 138
Nepal Nepal 2,379 -5.03% 50
Nauru Nauru 0 175
New Zealand New Zealand 120 -0.826% 130
Oman Oman 151 +4.86% 122
Pakistan Pakistan 20,497 -0.669% 4
Panama Panama 262 -2.24% 108
Peru Peru 1,662 -1.66% 60
Philippines Philippines 9,542 +4.55% 14
Palau Palau 2 0% 173
Papua New Guinea Papua New Guinea 1,304 -0.685% 68
Poland Poland 712 +2.45% 81
North Korea North Korea 1,345 -0.738% 66
Portugal Portugal 137 +3.79% 126
Paraguay Paraguay 480 -1.23% 92
Palestinian Territories Palestinian Territories 2,408 +625% 49
Qatar Qatar 52 +10.6% 149
Romania Romania 380 -4.76% 100
Russia Russia 5,445 +12.2% 27
Rwanda Rwanda 1,229 -1.99% 70
Saudi Arabia Saudi Arabia 1,967 +3.2% 57
Sudan Sudan 11,645 +8.62% 12
Senegal Senegal 2,318 +0.346% 51
Singapore Singapore 89 +2.3% 137
Solomon Islands Solomon Islands 72 +1.41% 143
Sierra Leone Sierra Leone 2,799 -0.78% 47
El Salvador El Salvador 371 -6.78% 101
San Marino San Marino 0 175
Somalia Somalia 7,243 -10.7% 20
Serbia Serbia 106 -4.5% 134
South Sudan South Sudan 4,503 +5.53% 33
São Tomé & Príncipe São Tomé & Príncipe 30 +3.45% 156
Suriname Suriname 45 -4.26% 152
Slovakia Slovakia 86 +1.18% 140
Slovenia Slovenia 23 0% 159
Sweden Sweden 139 -0.714% 125
Eswatini Eswatini 224 -0.444% 111
Seychelles Seychelles 7 0% 169
Syria Syria 2,441 +30.9% 48
Turks & Caicos Islands Turks & Caicos Islands 1 0% 174
Chad Chad 5,914 +2.55% 24
Togo Togo 1,302 +0.308% 69
Thailand Thailand 4,285 -5.47% 35
Tajikistan Tajikistan 296 +0.68% 106
Turkmenistan Turkmenistan 343 +0.587% 103
Timor-Leste Timor-Leste 458 -2.35% 96
Tonga Tonga 7 0% 169
Trinidad & Tobago Trinidad & Tobago 89 +8.54% 137
Tunisia Tunisia 530 +6.21% 90
Turkey Turkey 5,064 +92.4% 29
Tuvalu Tuvalu 1 0% 174
Tanzania Tanzania 8,411 +0.61% 17
Uganda Uganda 13,910 -0.172% 10
Ukraine Ukraine 2,252 -11.4% 53
Uruguay Uruguay 176 0% 118
United States United States 12,726 -4.6% 11
Uzbekistan Uzbekistan 2,161 +11.6% 54
St. Vincent & Grenadines St. Vincent & Grenadines 8 0% 168
Venezuela Venezuela 4,763 +0.401% 31
British Virgin Islands British Virgin Islands 2 0% 173
Vietnam Vietnam 3,775 +0.0795% 39
Vanuatu Vanuatu 24 +4.35% 158
Samoa Samoa 14 +7.69% 163
Kosovo Kosovo 67 -4.29% 145
Yemen Yemen 4,107 -5.72% 36
South Africa South Africa 8,027 +3.41% 18
Zambia Zambia 3,531 +0.0567% 41
Zimbabwe Zimbabwe 3,245 -0.946% 45

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SH.DTH.1519'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SH.DTH.1519'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))