Net trade in goods (BoP, current US$)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Angola Angola 22,604,796,440 +3.69% 21
Albania Albania -6,051,403,664 +23.2% 85
Argentina Argentina 22,376,764,306 -862% 22
Armenia Armenia -2,304,484,723 -8.36% 64
Antigua & Barbuda Antigua & Barbuda -653,472,199 -0.689% 54
Australia Australia 45,103,349,938 -46.3% 13
Austria Austria 8,579,119,507 +98.6% 30
Azerbaijan Azerbaijan 8,824,944,000 -31.1% 29
Belgium Belgium 5,241,463,523 +73.4% 33
Bangladesh Bangladesh -16,450,582,784 +70.4% 98
Bulgaria Bulgaria -5,790,020,000 +36.3% 83
Bahrain Bahrain 3,607,978,723 -19.9% 35
Bahamas Bahamas -3,722,018,786 +15.9% 73
Bosnia & Herzegovina Bosnia & Herzegovina -6,499,855,004 +14.6% 87
Belarus Belarus -4,700,900,000 +86% 78
Belize Belize -879,523,647 +13.1% 58
Brazil Brazil 65,842,294,657 -28.6% 11
Brunei Brunei 3,708,947,272 -2.34% 34
Bhutan Bhutan -628,894,317 -10.9% 52
Canada Canada -4,960,971,145 +816% 79
Switzerland Switzerland 127,287,136,416 +1.88% 5
Chile Chile 21,032,531,463 +52.3% 23
China China 767,976,198,456 +29.3% 1
Colombia Colombia -9,160,354,810 +34.6% 92
Cape Verde Cape Verde -845,576,462 -5.33% 57
Costa Rica Costa Rica -2,509,594,115 -20.5% 65
Cyprus Cyprus -7,403,694,463 -7.65% 89
Czechia Czechia 17,996,722,959 +37.9% 26
Germany Germany 255,019,028,086 +3.86% 2
Djibouti Djibouti 41,450,097 -85.7% 42
Dominica Dominica -208,711,975 -12.9% 45
Denmark Denmark 40,540,232,627 +34.2% 16
Dominican Republic Dominican Republic -15,935,900,000 +0.458% 97
Ecuador Ecuador 6,813,038,587 +209% 32
Spain Spain -34,958,066,874 -6.78% 105
Estonia Estonia -2,910,212,732 +18.1% 67
Finland Finland 7,396,910,777 -23.7% 31
France France -62,978,904,803 -23.5% 109
United Kingdom United Kingdom -288,728,599,256 +11.4% 112
Georgia Georgia -6,470,152,546 +6.46% 86
Gambia Gambia -1,025,006,568 +16.8% 59
Greece Greece -38,580,996,406 +8.03% 107
Grenada Grenada -491,408,669 +6.5% 51
Guatemala Guatemala -15,802,379,220 +9.99% 96
Hong Kong SAR China Hong Kong SAR China -1,964,866,675 -87.8% 61
Honduras Honduras -8,903,274,603 +6.56% 91
Croatia Croatia -19,602,333,121 +3.44% 99
Hungary Hungary 1,516,971,105 -511% 39
Indonesia Indonesia 39,931,601,513 -13.7% 17
India India -279,236,787,767 +13.8% 111
Iceland Iceland -2,278,196,556 +8.49% 63
Israel Israel -26,322,900,000 +27.9% 102
Italy Italy 69,145,166,155 +74.9% 10
Jamaica Jamaica -4,199,379,244 -4.55% 74
Japan Japan -24,254,044,103 -50.2% 101
Kazakhstan Kazakhstan 18,883,784,472 -4.84% 25
Cambodia Cambodia -4,495,586,540 +50.5% 75
St. Kitts & Nevis St. Kitts & Nevis -370,375,644 +6.9% 47
South Korea South Korea 100,126,900,000 +166% 7
Kuwait Kuwait 44,047,951,671 -13.9% 14
St. Lucia St. Lucia -711,323,125 +16.9% 56
Lesotho Lesotho -700,107,560 -11.9% 55
Lithuania Lithuania -5,109,650,730 +3.91% 80
Luxembourg Luxembourg 1,588,167,260 +311% 38
Latvia Latvia -3,564,936,607 -9.71% 71
Moldova Moldova -5,619,920,000 +15.4% 82
Maldives Maldives -3,076,406,071 +7.03% 68
Mexico Mexico -8,245,882,693 +48.6% 90
North Macedonia North Macedonia -3,352,462,152 +17.7% 70
Malta Malta -2,723,507,295 +2.89% 66
Montenegro Montenegro -3,573,513,679 +10.6% 72
Mozambique Mozambique -163,858,809 -81.9% 44
Malaysia Malaysia 25,666,709,568 -14.3% 19
Namibia Namibia -2,171,373,013 +40.4% 62
Nigeria Nigeria 13,166,183,305 +63% 27
Nicaragua Nicaragua -3,294,700,000 +22.4% 69
Netherlands Netherlands 107,087,142,934 +16.4% 6
Norway Norway 74,098,245,265 -9.12% 9
Nepal Nepal -13,060,693,536 +24.8% 94
New Zealand New Zealand -5,237,979,666 -29.5% 81
Pakistan Pakistan -23,553,000,000 +20.6% 100
Panama Panama -6,032,141,440 -39% 84
Peru Peru 24,080,574,871 +40.4% 20
Philippines Philippines -68,744,346,165 +4.1% 110
Poland Poland -6,904,000,000 -235% 88
Portugal Portugal -27,332,830,760 -0.0189% 103
Paraguay Paraguay -1,094,048,117 -240% 60
Palestinian Territories Palestinian Territories -4,503,230,632 -36.8% 76
Qatar Qatar 62,437,362,637 -8.59% 12
Romania Romania -35,606,742,987 +13.7% 106
Russia Russia 132,967,310,000 +9.29% 4
Saudi Arabia Saudi Arabia 90,273,218,071 -29.6% 8
Singapore Singapore 148,133,409,834 -5.79% 3
Solomon Islands Solomon Islands -98,468,458 -50.4% 43
El Salvador El Salvador -9,508,769,534 +7.39% 93
Suriname Suriname 931,324,087 +18.3% 40
Slovakia Slovakia -433,660,907 -134% 50
Slovenia Slovenia 644,213,160 +37.4% 41
Sweden Sweden 37,462,591,343 +13.6% 18
Thailand Thailand 19,273,530,151 -0.544% 24
Tajikistan Tajikistan -4,513,347,236 +35.9% 77
Timor-Leste Timor-Leste -644,176,704 +359% 53
Tonga Tonga -220,990,046 +0.163% 46
Trinidad & Tobago Trinidad & Tobago 2,321,784,761 -38.3% 37
Turkey Turkey -56,258,000,000 -34.8% 108
Ukraine Ukraine -30,403,000,000 +4.35% 104
Uruguay Uruguay 3,469,084,377 +56.6% 36
United States United States -1,212,993,000,000 +14.1% 113
Uzbekistan Uzbekistan -13,533,889,535 -8.92% 95
St. Vincent & Grenadines St. Vincent & Grenadines -385,671,004 +9.29% 48
Vietnam Vietnam 43,043,000,000 -2.24% 15
Samoa Samoa -405,485,109 +5.07% 49
South Africa South Africa 11,861,927,173 +114% 28

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'BN.GSR.MRCH.CD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'BN.GSR.MRCH.CD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))